Skip to main content

Chiral Dirac Equations

  • Chapter

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

A chiral relativistic wave equation is proposed for neutrinos. This wave equation allows a mass term. We study this equation in the Clifford algebra of space, and in the frame of the Clifford spacetime algebra, second-order equation, plane waves, Lagrangian formalism, conservative current. Next we extend the wave equation to the complete spacetime algebra and we obtain a chiral wave equation with a mass term and a charge term. We study the relativistic invariance, the Lagrangian formalism, the second-order equation, we solve the equation in the case of the hydrogen atom. We obtain the right number of energy levels and the right energy levels. We study the enlargement of the gauge invariance, with a real matrix formalism. The electric gauge group may be extended to SO(8), a subgroup of SO(16).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A.M. Dirac, Proc. Roy. Soc. (London) 117,610–624, 1928.

    Article  MATH  Google Scholar 

  2. W.E. Baylis, Eigenspinors and electron spin, in The Theory of the Electron Advances in Applied Clifford Algebras 7 (S), 1997.

    Google Scholar 

  3. C. Daviau, Sur l’équation de Dirac dans l’algèbre de Pauli, Ann. Fond. Louis de Broglie 22, n° 1, 87–103, 1997.

    MathSciNet  Google Scholar 

  4. C. Daviau, Dirac equation in the space Clifford algebra, in Clifford Algebras and their Application in Mathematical Physics Volker Dietrich, Klaus Habetha and Gerhard Jank, eds., Aachen 1996, Kluwer, Dordrecht, 1998, pp. 67–87.

    Chapter  Google Scholar 

  5. C. Daviau, Sur les tenseurs de la théorie de Dirac en algèbre d’ espace, Ann. Fond. Louis de Broglie 23, n° 1, 27–37, 1998.

    MathSciNet  Google Scholar 

  6. C. Daviau, Application à la théorie de la lumière de Louis de Broglie d’une réécriture de l’équation de Dirac, Ann. Fond. Louis de Broglie 23, n° 3–4, 121–127, 1998.

    MathSciNet  Google Scholar 

  7. C. Daviau, Equations de Dirac et fermions fondamentaux, Ann. Fond. Louis de Broglie 24, n° 1–4, 175–194, 1999, and 25, n° 1, 93–106, 2000.

    MathSciNet  Google Scholar 

  8. L. de Broglie, L’électron magnétique Hermann, Paris, 1934, 138.

    Google Scholar 

  9. C. Daviau, Vers une mécanique quantique sans nombre complexe, Ann. Fond. Louis de Broglie 26, n° 1–3, 149–171, 2001.

    MathSciNet  Google Scholar 

  10. D. Hestenes, Spacetime Algebra Gordon & Breach, New York 1966, 1987, 1992.

    Google Scholar 

  11. D. Hestenes, Real spinor fields, J. Math. Phys. 8, n° 4, 798–808, 1967.

    Article  Google Scholar 

  12. D. Hestenes, Local observables in the Dirac theory, J. Math. Phys. 14, n° 7, 893–905, 1973.

    Article  Google Scholar 

  13. D. Hestenes, Proper particle mechanics, J. Math. Phys. 15, n° 10, 1768–1777, 1974.

    Article  Google Scholar 

  14. D. Hestenes, Proper dynamics of a rigid point particle, J. Math. Phys. 15, n° 10, 1778–1786, 1974.

    Article  Google Scholar 

  15. D. Hestenes, Observables, operators, and complex numbers in the Dirac theory, J. Math. Phys. 16, n° 3, 556–572, 1975.

    Article  MathSciNet  Google Scholar 

  16. D. Hestenes, A unified language for Mathematics and Physics & Clifford algebra and the interpretation of quantum mechanics in Clifford Algebras and Their Applications in Mathematics and Physics J.S.R. Chisholm & A.K. Common, eds., Reidel, Dordrecht, 1986, pp. 1–23 and pp. 321–346.

    Google Scholar 

  17. R. Boudet, La géométrie des particules du groupe SU(2) et l’ algèbre réelle d’ espacetemps, Ann. Fond. Louis de Broglie 13, n° 1, 105–137, 1988.

    Google Scholar 

  18. R. Boudet, Le corpuscule de Louis de Broglie et la géométrie de l’espace-temps Courants, Amers, Ecueils en microphysique, Fond. Louis de Broglie, 1993, pp. 7787.

    Google Scholar 

  19. R. Boudet, The Takabayasi moving frame, from a potential to the Z boson, in The Present Status of the Quantum Theory of the Light S. Jeffers and J.P. Vigier, eds., Kluwer, Dordrecht, 1995, pp. 1–11.

    Google Scholar 

  20. A. Lasenby, C. Doran, S. Gull, A Multivector Derivative Approach to Lagrangian Field Theory, Found. of Phys. 23, n° 10, 1295–1327, 1993.

    Article  MathSciNet  Google Scholar 

  21. C. Daviau, Sur une équation d’onde relativiste et ses solutions à symétrie interne, Ann. Fond. Louis de Broglie 26, n° 4, 699–724, 2001.

    MathSciNet  Google Scholar 

  22. G. Ziino, Massive chiral fermions: a natural account of chiral phenomenology in the framework of Dirac’s fermion theory, Ann. Fond. L. de Broglie 14, n° 4, 427–438, 1989.

    Google Scholar 

  23. G. Ziino, On the true meaning of "maximal parity violation": ordinary mirror symmetry regained from "CP symmetry", Ann. Fond. L. de Broglie 16, n° 3, 343–353, 1991.

    Google Scholar 

  24. H. Krüger, New solutions of the Dirac equation for central fields in The Electron D. Hestenes and A. Weingartshofer, eds., Kluwer, Dordrecht, 1991, pp. 49–81.

    Chapter  Google Scholar 

  25. R.S. Farwell and J.S.R. Chisholm, Unified spin gauge theory models, in Clifford Algebras and Their Applications in Mathematics and Physics J.S.R. Chisholm & AK Common, eds., Reidel, Dordrecht, 1986, pp. 363–370.

    Google Scholar 

  26. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264–1290, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Daviau, C. (2004). Chiral Dirac Equations. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_28

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics