Skip to main content

Nonlinear wave diffraction

  • Conference paper
  • 471 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 32))

Abstract

The high-frequency asymptotics of solutions of wave equations are described by ray theory in which the wave energy propagates along a set of curves in space-time, called rays. Two examples of ray theories are the geometrical optics theory of light and semi-classical quantum mechanics. When applicable, ray theory is extremely powerful and it often provide surprisingly accurate quantitative results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beals, M., Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Birkhäuser, Boston, 1989.

    Book  MATH  Google Scholar 

  2. Choquet-Bruhat, Y., Ondes asymptotiques et approchées pour systèmes non linéaires d’équations aux dérivées partielles non linéaires, J. Math. Pure et Appl. 48 (1969), 117–158.

    MathSciNet  MATH  Google Scholar 

  3. Cole, J. D., and Cook L. P., Transonic Aerodynamics, Elsevier, New York, 1986.

    MATH  Google Scholar 

  4. Colella, P., and Henderson, R., The von Neumann paradox for the diffraction of weak shock waves, J. Fluid Mech. 213 (1990), 71–94.

    Article  MathSciNet  Google Scholar 

  5. Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. I-IV, Springer-Verlag, Berlin, 1983.

    Book  Google Scholar 

  6. Hunter, J. K., Transverse diffraction of nonlinear waves and singular rays, SIAM J. Appl. Math 48 (1988), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hunter, J. K., Nonlinear geometrical optics, in Multidimensional Hyperbolic Problems and Computations, Vol. 29, IMA Volumes in Mathematics and Its Applications, ed. A. J. Majda and J. Glimm, Springer-Verlag, New York (1991), 179–197.

    Chapter  Google Scholar 

  8. Hunter, J. K., and Brio, M., Irregular reflection of weak shocks I., submitted to J. Fluid Mech.

    Google Scholar 

  9. Hunter, J. K., and Keller, J. B., Weakly nonlinear high frequency waves, Comm. Pure Appl Math. 36 (1983), 547–569.

    Article  MathSciNet  MATH  Google Scholar 

  10. Keller, J. B., Rays waves and asymptotics, Bulletin of the AMS 84 (1978), 727–750.

    Article  MATH  Google Scholar 

  11. Kreiss, H.-O., and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, 1989.

    Google Scholar 

  12. Ludwig, D., Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19 (1966), 215–250.

    Article  MathSciNet  MATH  Google Scholar 

  13. Majda, A. J., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, 1984.

    Google Scholar 

  14. Sturtevant, B., and Kulkarny, V. A., The focusing of weak shock waves, J. Fluid Mech. 73 (1983), 651–671.

    Article  Google Scholar 

  15. Tabak, E., and Rosales, R. R., Weak shock focusing and the von Neumann paradox of oblique shock reflection, Phys. Fluids 6 (1994), 1874–1892.

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, M., Pseudodifferential Operators and Nonlinear Partial Differential Equations, Progress in Mathematics, Vol. 100, Birkhäuser, Boston, 1991.

    Google Scholar 

  17. Timman, R., Unsteady motion in transonic flow, in Symposium Transonicum, ed. K. Oswatitsch, Springer-Verlag, Aachen (1962), 394–401.

    Google Scholar 

  18. Van Dyke, M., An Album of Fluid Motion, Parabolic Press, Stanford, 1982.

    Google Scholar 

  19. Whitham, G. B., Linear and Nonlinear Waves, Wiley, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Hunter, J.K. (1997). Nonlinear wave diffraction. In: Colombini, F., Lerner, N. (eds) Geometrical Optics and Related Topics. Progress in Nonlinear Differential Equations and Their Applications, vol 32. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-2014-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2014-5_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7381-3

  • Online ISBN: 978-1-4612-2014-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics