Advertisement

Mathematical Modeling and Simulation for Applications of Fluid Flow in Porous Media

  • Richard E. Ewing

Abstract

Mathematical models have been widely used to understand, predict, or optimize many complex physical processes. Here we address the need for developing models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies.

Three basic problem areas must be addressed in the modeling and simulation of the flow of groundwater contamination. One must first obtain effective model equations to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales, modeling the effects of this heterogeneity of the porous medium, and developing effective parameters in the governing models that describe the effects of the heterogeneities in the reservoir simulators. Next, one must develop accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one should develop efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss advances in these areas.

Keywords

Porous Medium Reservoir Simulation Mixed Finite Element Adjoint Method Heterogeneous Porous Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Arbogast, and M. F. Wheeler, A characteristic mixed finite element method for advection dominated transport problems, SIAM J. Numer. Anal., 32, (1995).Google Scholar
  2. [2]
    A. A. Baker, L. W. Gelhax, A. L. Gutjahr, and J. R. Macmillan, Stochastic analysis of spatial variability in subsurface flows, I. Comparison of one- and three-dimensional flows, Water Resour. Res., 14 (2), (1978), 263–271.CrossRefGoogle Scholar
  3. [3]
    J. W. Barrett, and K. W. Morton, Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comp. Meth. Appl. Mech. Engng., 45, (1984), 97–122.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, Inc., (1988).Google Scholar
  5. [5]
    J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comp. Meth. in Appl. Mech. and Engng., 67, (1988), 149–159.MATHCrossRefGoogle Scholar
  6. [6]
    J. Bramble and J. Pasciak, A preconditioning technique for indefinite system resulting from mixed approximations of elliptic problems, Math. Comp., 50, (1988), 1–18.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. Bramble, J. Pasciak, and A. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34, (1997), to appear.Google Scholar
  8. [8]
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Methods, Springer-Verlag, New York, (1991).Google Scholar
  9. [9]
    M. A. Celia, I. Herrera, E. Bouloutas, and J. S. Kindred, A new numerical approach for the advective diffusive transport equation, Numer. Meth. PDE, 5, (1989), 203–226.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13, (1990), 187–206.CrossRefGoogle Scholar
  11. [11]
    G. Chavent, A new formulation of diphasic incompressible flows in porous media, in Lecture Notes in Mathematics, Springer-Verlag, 503, (1976).Google Scholar
  12. [12]
    G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, North-Holland, Amsterdam, (1986).Google Scholar
  13. [13]
    Z. Chen, R. E. Ewing, and M. S. Espedal, Multiphase flow simulation with various boundary conditions, in Computational Methods in Water Resources, ( A. Peters, G. Wittum, B. Herding, U. Meissner, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds.), Kluwer Academic Publishers, Netherlands, (1994), 925–932.Google Scholar
  14. [14]
    L. Cowsar, J. Mandel, and M. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp., 64 (211), (1995), 989–1015.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    J. H. Cushman and T. R. Ginn, On nonlocal dispersion in porous media with continuously evolving scales of heterogeneity, J. Transp. in Porous Media, to appear.Google Scholar
  16. [16]
    G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, Berlin-Heidelberg, (1989).Google Scholar
  17. [17]
    H. K. Dahle, Adaptive characteristic operator splitting techniques for convection-dominated diffusion problems in one and two space dimensions, in IMA Volumes in Mathematics and Its Applications, Springer Verlag, 2, (1988), 77–88.MathSciNetGoogle Scholar
  18. [18]
    H. K. Dahle, M. S. Espedal, R. E. Ewing, and O. Sævareid, Characteristic adaptive subdomain methods for reservoir flow problems, Numerical Methods for Partial Differential Equations, 6, (1990), 279–309.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    H. K. Dahle, R. E. Ewing, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear advection-diffusion equation, Comput. Meth. Appl. Mech. Engng., (to appear).Google Scholar
  20. [20]
    L. Demkowitz and J. T. Oden, An adaptive characteristics Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables, Comp. Meth. Appl Mech. Engng., 55, (1986), 63–87.CrossRefGoogle Scholar
  21. [21]
    J. Douglas, Jr. and T. F. Russell, Numerical methods for convection dominated diffusion problems based on combining the method of Characteristics with Finite Element or Finite Difference Procedures, SIAM J. Numer. Anal., 19, (1982), 871–885.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    M. S. Espedal, R. Hansen, P. Langlo, O. Sævareid, and R. E. Ewing, Heterogeneous porous media and domain decomposition methods, Proc. on the 2nd European Conf. on the Math, of Oil Recovery, (D. Guerillot and O. Guillon, eds.), Paris, Editors Technip, (1990), 157–163.Google Scholar
  23. [23]
    M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin sub-domain methods for two-phae immiscible flow, Comp. Meth. in Appl. Mech. and Engng., 64, (1987), 113–135.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    M. S. Espedal, P. Langlo, O. Saevareid, E. Geslifosa, and R. Hansen, Heterogeneous reservoir models, local refinement, and effective parameters, in Proc. of 11th SPS Symp. on Reser. Simul., SPE 21231, (1991), 307–316.Google Scholar
  25. [25]
    R. E. Ewing, Operator splitting and Eulerian-Lagrangian localized adjoint methods for multiphase flow, (J. Whiteman, ed.), The Mathematics of Finite Elements and Applications VII MAFELAP 1990, Academic Press Inc., San Diego, CA, (1991), 215–237.Google Scholar
  26. [26]
    R. E. Ewing, Problems arising in the modeling of processes for hydrocarbon recovery, in The Mathematics of Reservoir Simulation, (R. E. Ewing, ed.), Frontiers in Applied Mathematics, SIAM Publications, Philadelphia, 1, (1983), 3–34.Google Scholar
  27. [27]
    R. E. Ewing, B. A. Boyett, D. K. Babu, and R. F. Heinemann, Efficient use of locally refined grids for multiphase reservoir simulations, Proc. 10th SPE Symp. on Reser. Simul., SPE 18413, Houston, TX, February 6–8, (1989), 55–70.Google Scholar
  28. [28]
    R. E. Ewing and J. H. George, Identification and control of distributed parameters in porous media flow, Distributed Parameter Systems, (F. Kappel, K. Kunisch, and W. Schappacher, eds.), Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 75, (1985), 145–161.Google Scholar
  29. [29]
    R. E. Ewing and R. F. Heinemann, Incorporation of mixed finite element methods in compositional simulation for reduction of numerical dispersion, Proc. of 7th Soc. of Pet Eng. Symp. on Reser. Simul., SPE 12267, San Francisco, November 15–18, (1983), 341–347.Google Scholar
  30. [30]
    R. E. Ewing and R. F. Heinemann, Mixed finite element approximation of phase velocities in compositional reservoir simulation, Comp. Meth. Appl. Mech. Engng., 47, (1984), 161–176.MATHCrossRefGoogle Scholar
  31. [31]
    R. E. Ewing, R. T. Heinemann, J. V. Koebbe, and U. S. Prasad, Velocity weighting techniques for fluid displacement, Comp. Meth. Appl. Mech. Engng., 64, (1987), 137–151.MATHCrossRefGoogle Scholar
  32. [32]
    R. E. Ewing and R. D. Lazarov, Approximation of parabolic problems on grids locally refined in time and space, Appl. Numer. Math., 14, (1994), 199–211.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    R. E. Ewing, R. D. Lazarov, T. F. Russell, and P. S. Vassilevski, Local refinement via domain decomposition techniques for mixed finite element methods with rectangular Raviart-Thomas elements, (T.F. Chan, R. Glowinski, J. Periaux, and O. Widlund, eds.), Domain Decomposition Methods for Partial Differential Equations, SIAM Publications, Philadelphia, PA, (1990), 98–114.Google Scholar
  34. [34]
    R. E. Ewing, R. D. Lazarov, and A. T. Vassilev, Adaptive techniques for time-dependent problems, Comp. Meth. Appl Mech. Engng., 101 (3), (1992), 113–126.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids, I: Error analysis, Math. Comp., 56 (194), (1991), 437–462.MathSciNetMATHGoogle Scholar
  36. [45]
    R. E. Ewing and J. Wang, Analysis of mixed finite element methods on locally refined grids, Numerische Mathematik, 63, (1992), 183–194.MathSciNetMATHCrossRefGoogle Scholar
  37. [46]
    R. E. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. Modélisation Mathématique Analyse Numérique, 26, (1992), 739–756.MathSciNetMATHGoogle Scholar
  38. [47]
    R. E. Ewing and H. Wang, Optimal-order convergence rate for Eulerian-Lagrangian localized adjoint method for reactive transport and contamination in groundwater, Numer. Meth. in PDE’s, 11 (1), (1995), 1–81.MathSciNetMATHCrossRefGoogle Scholar
  39. [48]
    R. E. Ewing, H. Wang, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis, IMA J. Numerical Analysis, (to appear).Google Scholar
  40. [49]
    F. J. Fayers and T. A. Hewett, A review of current trends in petroleum reservoir description and assessing the impacts on oil recovery, (T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds.), Mathematical Modeling in Water Resources, Computational Methods in Water Resources, IX, Elsevier Applied Science, London, 2, (1992), 3–34.Google Scholar
  41. [50]
    J. Furtado, J. Glimm, W. B. Lindquist, and L. P. Pereira, Characterization of mixing length growth for flow in heterogeneous porous media, Proc. of nth SPE Symp. on Reser. Simul., Anaheim, CA, (1991), 317–322.Google Scholar
  42. [51]
    J. Glimm and B. Lindquist, Scaling laws for macrodispersion, (T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds.), Mathematical Modeling in Water Resources, Computational Methods in Water Resources, IX, Elsevier Applied Science, London, 2, (1992), 35–50.Google Scholar
  43. [52]
    J. Glimm and D. H. Sharp, A random field model for anomalous diffusion in heterogeneous porous media, J. Statistical Physics, 62, (1991), 415–424.MathSciNetMATHCrossRefGoogle Scholar
  44. [53]
    I. Herrera, Unified formulation of numerical methods I. Green’s formula for operators in the discontinuous fields, Numer. Meth. for PDE, 1, (1985), 25–44.MathSciNetMATHCrossRefGoogle Scholar
  45. [54]
    I. Herrera, R. E. Ewing, M. A. Celia, and T. F. Russell, Eulerian-Lagrangian localized adjoint method: The theoretical framework, Numer. Meth. for PDE, 9, (1993) 431–457.MathSciNetMATHCrossRefGoogle Scholar
  46. [55]
    D. Hittel, Fundamentals of Soil Physics, Academic Press, (1980).Google Scholar
  47. [56]
    O. Langlo and M. Espedal, Heterogeneous reservoir models, two-phase immiscible flow in 2-d, (T. F. Russell, R.E. Ewing, C.A. Brebbia, W.G. Gray, and G.F. Pinder, eds.), Mathematical Modeling in Water Resources, Computational Methods in Water Resources, IX, Elsevier Applied Science, London, 2, (1992), 71–80.Google Scholar
  48. [57]
    T. Lin and R. E. Ewing, Parameter estimation for distributed systems arising in in fluid flow problems via time series methods, in Proceedings of Conference on “Inverse Problems”, Oberwolfach, West Germany, Birkhauser, Berlin, (1986), 117–126.Google Scholar
  49. [58]
    T. F. Russell, Eulerian-Lagrangian localized adjoint methods for advection-dominated problems, Proc. from the 13th Biennial Conf. Numer. Anal., Dundee, Scotland, Pitman, London, June 27–30, (1989).Google Scholar
  50. [59]
    T. F. Russell, The time-stepping along characteristics with incomplete iteration for Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22, (1985), 970–1013.MathSciNetMATHCrossRefGoogle Scholar
  51. [60]
    T. F. Russell and R. V. Trujillo, Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple divergences, Proc. 7th Int. Conf. on Comp. Meth. in Water Resources, Venice, Italy, (to appear).Google Scholar
  52. [61]
    T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, (R. E. Ewing, ed.), SIAM Publications, Philadelphia, (1983).Google Scholar
  53. [62]
    T. Rusten and R. Winther, A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal Appl., 13, (1992), 887–904.MathSciNetMATHCrossRefGoogle Scholar
  54. [63]
    M. van Genuchten, A closed form equation for predicting the hydraulic conductivity in soils, Soil Sci. Soc. Am. J., 44, (1980), 892–898.CrossRefGoogle Scholar
  55. [64]
    J. E. Warren and F. F. Skiba, Macroscopic dispersion, Soc. Pet. Engng. J., 4, (1964), 215–230.Google Scholar
  56. [65]
    H. Wang, R. E. Ewing, and M. A. Celia, Eulerian-Lagrangian localized adjoint methods for reactive transport with biodégradation, Numer. Meth. for P.D.E.’s, 11(3), (1995), 229–254.Google Scholar
  57. [66]
    A. T. Watson, J. G. Wade, and R. E. Ewing, Parameter and system identification for fluid flow in underground reservoirs, in Proc. of the Conf., Inverse Problems and Optimal Design in Industry, Philadelphia, PA, July 8–10 (1994).Google Scholar
  58. [67]
    L. C. Young, A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comp. Meth. Appl. Mech. Engng., 47, (1984), 3–46.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard E. Ewing
    • 1
  1. 1.Institute for Scientific ComputationTexas A and M UniversityCollege StationUSA

Personalised recommendations