Advertisement

Symm’s Integral Equation

  • Prem K. Kythe

Abstract

A potential—theoretic formulation of the problem of conformally mapping a simply connected region (or its complement) onto the unit disk leads to a Fredholm integral equation of the first kind, known as Symm’s integral equation, which has a kernel with a logarithmic singularity. Unlike Fredholm integral equations of the second kind, e.g., Theodorsen’s equation, in which the singularity of the kernel at points near but not on the boundary creates computational difficulties, Symm’s integral equation is found easily solvable by numerical methods, such as the orthonormal polynomials method or its modified form, Lagrange’s interpolation method, and spline approximations which are discussed in this chapter. Numerical evaluation of Green’s functions, as developed in Chapter 6, is another viable alternative to obtain the approximate mapping function.

Keywords

Integral Equation Fredholm Integral Equation Spline Approximation Interior Angle Exterior Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Prem K. Kythe
    • 1
  1. 1.Department of MathematicsUniversity of New OrleansNew Orleans

Personalised recommendations