pros-Methylimidazoleacetic Acid: A Potential Neurotoxin in Brain?

  • George D. Prell

Abstract

pros-Methylimidazoleacetic acid (p-MIAA; Nπ-methylimidazoleacetic acid; 1-methylimidazole-5-acetic acid) (Fig. 1) is routinely measured (Khandelwal et al., 1982; Green and Khandelwal, 1985; Prell et al., 1996b) in our studies of its isomer tele-methylimidazoleacetic acid (t-MIAA; Nτ-methylimidazoleacetic acid; 1-methylimidazole-4-acetic acid) (Fig. 1). The latter is a metabolite of histamine (Schayer and Cooper, 1956; Tham et al., 1966a; Kelvin, 1970; Green et al., 1987); p-MIAA is not (Prell et al. 1989a). In our studies of the histaminergic system in brain, we generally measure levels of both tele-methylhistamine (t-MH), histamine’s primary metabolite in brain, and levels of its metabolite, t-MIAA. Levels of t-MH and t-MIAA are indices of brain histaminergic activity (Prell and Green, 1994). Comparative measurements of p-MIAA (e.g. Prell et al., 1988a, 1991a) have helped us in evaluating the distinctiveness of findings obtained about t-MIAA.

Keywords

Vortex Schizophrenia Caffeine Neurol NMDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki K., Takino T., Ida S., and Kuriyama K. (1986) Alteration of amino acids in cerebrospinal fluid from patients with Parkinson’s disease and spinocerebellar degeneration. Acta Neurol. Scand. 73:105–110.PubMedCrossRefGoogle Scholar
  2. Bernardini G.L., Specialte S.G., and German D.C. (1990) Increased midbrain dopaminergic cell activity following 2’CH3-MPTP-induced dopaminergic cell loss: an in vitro electrophysiological study. Brain Res. 527:123–129.PubMedCrossRefGoogle Scholar
  3. Bigelow L., and Berthot B. (1989) The psychiatric symptom assessment scale (PSAS). Psychopharmacol. Bull. 25:168–179.Google Scholar
  4. Blandina P., Knott P. J., Leung L.K.H., and Green J.P. (1989) Stimulation of histamine H2 receptor in rat hypothalamus releases endogenous norepinephrine. J. Pharmacol. Exp. Ther. 249:44–51.PubMedGoogle Scholar
  5. Blandina P, Cherici G., Moroni F., Prell G.D., and Green J.P. (1995) Release of glutamate from striatum of freely moving rats by pros-methylimidazoleacetic acid. J. Neurochem. 64:788–793.PubMedCrossRefGoogle Scholar
  6. Block W.D., Hubbard R.W., and Steele B.F. (1965) Excretion of histidine and histidine derivatives of human subjects ingesting protein from different sources. J. Nutr. 85: 419–425.PubMedGoogle Scholar
  7. Brown D.D., Silva O.M, McDonald P.B., Snyder S.H., and Kies M.W. (1960) The mammalian metabolism of L-histidine. III. The urinary metabolites of L-histidine-C14 in the monkey, human and rat. J. Biol. Chem. 235:154–159.PubMedGoogle Scholar
  8. Burns R.S, Chiueh C.C., Markey S.P., Ebert M.H., Jacobowitz D.M., and Kopin I.J. (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80:4546–4550.PubMedCrossRefGoogle Scholar
  9. Burns R.S., LeWitt P.A., Ebert M.H., Pakkenberg H., and Kopin I.J. (1985) The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). New Engl. J. Med. 312:1418–1421.PubMedCrossRefGoogle Scholar
  10. Butt J.H., and Fleshler B. (1965) Anserine, a source of 1-methylhistidine in urine of man. Proc. Soc. Exp. Biol. Med. 118:722–725.PubMedCrossRefGoogle Scholar
  11. Carlsson M., and Carlsson A. (1989) The NMDA antagonist MK-801 causes marked loco-motor stimulation in monoamine-depleted mice. J. Neural Transm. 75:221–226.PubMedCrossRefGoogle Scholar
  12. Coughlin S.S., Pincus J.H., and Karstaedt P. (1992) An international comparison of dietary protein consumption and mortality from Parkinson’s disease. J. Neurol. 239:236–237.PubMedCrossRefGoogle Scholar
  13. Crush K.G. (1970) Camosine and related substances in animal tissues. Comp. Biochem. Physiol. 34:3–30.PubMedCrossRefGoogle Scholar
  14. Date J., Felten D.L., and Felton S.Y. (1990) Long-term effect of MPTP in the mouse brain in relation to aging: neurochemical and immunocytochemical analysis. Brain Res. 519: 266–276.PubMedCrossRefGoogle Scholar
  15. Datta S.P., and Harris H. (1951) Dietary origin of urinary methylhistidine. Nature 168: 296–297.PubMedCrossRefGoogle Scholar
  16. Davis G.C., Williams A.C., Markey S.P, Ebert M.H., Caine E.D., Reichert C.M., and Kopin I.J. (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1:249–254.PubMedCrossRefGoogle Scholar
  17. Dexter D.T., Wells F.R., Lees A.J., Agid F., Agid Y., Jenner P., and Marsden C.D. (1989) Increased nigral content and alterations in other metal ions occuring in brain in Parkinson’s disease. J. Neurochem. 52:1830–1836.PubMedCrossRefGoogle Scholar
  18. Dingledine R., and McBain C.J. (1994) Excitatory amino acid transmitters. In: Basic Neurochemistry (G.J. Siegel, B.W. Agranoff, R.W. Albers and P.B. Molinoff, eds.), pp. 367–387. Raven Press, New York.Google Scholar
  19. Doctor V.M., and Oro I. (1967) Non-enzymatic transamination of histidine with α-keto acids. Naturwissenschaften 54:1–3.CrossRefGoogle Scholar
  20. Drayer B.P., Olanow W., Burger P., Johnson G.A., Herfkens R., and Riederer S. (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159:493–498.PubMedGoogle Scholar
  21. Duvoisin R.C. (1971) The evaluation of extrapyramidal disease. In: Monoamines Noyaux Gris Centraux et Syndrome de Parkinson (de Ajuriaguerra J., Gautheir G., eds.), pp. 313–325. Masson, Paris.Google Scholar
  22. Ellison D.W., Beal M.F., Mazurek M.F., Malloy J.R., Bird E.D., and Martin J.B. (1987) Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid animal model of Huntington’s disease. Brain 10:1657–1673.CrossRefGoogle Scholar
  23. Ferraro T.N., and Hare T.A. (1985) Free and conjugated amino acids in human CSF: influence of age and sex. Brain Res. 338:53–60.PubMedCrossRefGoogle Scholar
  24. Fonnum F. (1984) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42: 1–11PubMedCrossRefGoogle Scholar
  25. German D.C., Dubach M., Askari S., Speciale S.G., and Bowden D.M. (1988) 1-Methyl-4phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience 24:161–174.PubMedCrossRefGoogle Scholar
  26. Granerus G. (1968) Urinary excretion of histamine, methylhistamine and methylimidazoleacetic acids in man under standardized dietary conditions. Scand. J. Clin. Lab. Invest. 22 (Suppl. 104):59–68.Google Scholar
  27. Green J.P. (1994) Histamine. In: Basic Neurochemistry (Siegel G.J., Agranoff B.W., Albers R.W., Molinoff P.B., eds.), pp. 309–319. Raven Press, New York.Google Scholar
  28. Green J.P., and Khandelwal J.K. (1985) Histamine turnover in regions of rat brain. Adv. Biosci. 51:185–195.Google Scholar
  29. Green J.P., Prell G.D., Khandelwal J.K., and Blandina P. (1987) Aspects of histamine metabolism. Agents Actions 22:1–15.PubMedCrossRefGoogle Scholar
  30. Greenamyre J.T. (1993) Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease. J. Neural Transm. [Gen. Sect.] 91:255–269.CrossRefGoogle Scholar
  31. Hallman H., Olson L., and Jonsson G. (1984) Neurotoxicity of the meperidine analogue Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur. J. Pharmacol. 97:133–136.PubMedCrossRefGoogle Scholar
  32. Hosein E.A., and Smart M. (1960) The presence of anserine and carnosine in brain tissue. Can. J. Biochem. Physiol. 38:569–573.PubMedCrossRefGoogle Scholar
  33. Hough L.B, Khandelwal J.K., and Green J.P. (1984) Histamine turnover in regions of rat brain. Brain Res. 291:103–109.PubMedCrossRefGoogle Scholar
  34. Hunter K.R., and Shaw K.M. (1975) Therapeutic effects. In: The Clinical Uses of Levodopa, (Stem G., ed.), pp. 41–71. University Park Press, Baltimore.Google Scholar
  35. Kanai Y., and Hediger M.A. (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471.PubMedCrossRefGoogle Scholar
  36. Kanner B.I., and Schuldiner S. (1987) Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22:1–38.PubMedCrossRefGoogle Scholar
  37. Karjala S.A., and Turnquest B.W. (1955) The characterization of two methylimidazoleacetic acids as radioactive histamine metabolites. J. Amer. Chem. Soc. 77: 6358–6359.CrossRefGoogle Scholar
  38. Kelvin A.S. (1970) Evidence that 1-methylimidazole-5-acetic acid is not a metabolite of histamine. Brit. J. Pharmacol. 38:437p-438p.Google Scholar
  39. Khandelwal J.K., Hough L.B., Pazhenchevsky B., Morrishow A. M., and Green J. P. (1982) Presence and measurement of methylimidazoleacetic acids in brain and body fluids. J. Biol. Chem. 257:12815–12819.PubMedGoogle Scholar
  40. Khandelwal J.K., Hough L.B., and Green J.P. (1984) Regional distribution of the histamine metabolite, tele-methylimidazoleacetic acid, in rat brain: effects of pargyline and probenecid. J. Neurochem. 42:519–522.PubMedCrossRefGoogle Scholar
  41. Kish S.J., Perry T.L., and Hansen S. (1979) Regional distribution of homocamosine, homocamosine-carnosine synthetase and homocarnosinase in human brain. J. Neurochem. 32:1629–1636.PubMedCrossRefGoogle Scholar
  42. Kollonitsch J., Patchett A.A., Marburg S., Maycock A.L., Perkins L.M., Doldouras G.A., Duggan D. E., and Aster S.D. (1978) Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature 274:906–908.PubMedCrossRefGoogle Scholar
  43. Lakke J.P.W.F., and Teelken A.W. (1976) Amino acid abnormalities in cerebrospinal fluid of patients with Parkinsonism and extrapyramidal disorders. Neurology 26:489–493.PubMedCrossRefGoogle Scholar
  44. Langston J.W., Ballard P., Petrud J.W., and Irwin J. (1983) Chronic Parkinsonism in humans due to a product of meperidine analogue synthetics. Science 219:979–980.PubMedCrossRefGoogle Scholar
  45. Lenney J.F. (1985) Carnosinase and homocarnosinosis. J. Oslo City Hosp. 35:27–40.PubMedGoogle Scholar
  46. Lenney J.F., Peppers S.C., Kucera-Orallo C.M., and George R.P. (1985) Characterization of human tissue camosinase. Biochem. J. 228:653–660.PubMedGoogle Scholar
  47. McManus I.R. (1962) Enzymatic synthesis of anserine in skeletal muscle by N-methylation of carnosine. J. Biol. Chem. 237:1207–1211.Google Scholar
  48. Meyer H.E., and Mayr G.W. (1987) Nπ-Methylhistidine in myosin-light-chain kinase. Biol. Chem. Hoppe-Seyler 368:160–1161.Google Scholar
  49. Miller L.P., and Oldendorf W.H. (1986) Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by a monocarboxylic acid cycle. J. Neurochem. 46:1412–1416.PubMedCrossRefGoogle Scholar
  50. Murphy W.H., Lindmark D.G., Patchen L.I., Housler M.E., Harrod E.K., and Mosovich L. (1973) Serum camosinase deficiency concomitant with mental retardation. Pediatr. Res. 7:601–606.CrossRefGoogle Scholar
  51. Nakajima T., Wolfgram F., and Clark W.G. (1967) The isolation of homoanserine from bovine brain. J. Neurochem. 14:1107–1112.PubMedCrossRefGoogle Scholar
  52. Nicholls D., and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.PubMedCrossRefGoogle Scholar
  53. Pileblad E., Fornstedt B., Clark D., and Carlsson A. (1985) Acute effects of 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine on dopamine metabolism in mouse and rat striatum. J. Pharmacol. 37:707–711.CrossRefGoogle Scholar
  54. Plaitakis A., and Shashidharan P. (1995) Amyotrophic lateral sclerosis, glutamate, and oxidative stress. In: Psychopharmacology: The Fourth Generation of Progress (Bloom F.E., Kupfer, D.J., eds.), pp. 1531–1543. Raven Press, New York.Google Scholar
  55. Prell G.D. (1991) Synthesis of 15N-imidazoleacetic acid. J. Label. Comp. Radiopharmaceut. 29:111–115.CrossRefGoogle Scholar
  56. Prell G.D., and Green J.P. (1991) Histamine metabolites and pros-methylimidazoleacetic acid in human cerebrospinal fluid. Agents Actions (Suppl.) 33:343–363.CrossRefGoogle Scholar
  57. Prell G.D., and Green J.P. (1994) Measurement of histamine metabolites in brain and cerebrospinal fluid provides insights into histaminergic activity. Agents Actions 41: C5–C8.PubMedCrossRefGoogle Scholar
  58. Prell G.D., Khandelwal J.K., Burns R.S., and Green J.P. (1988a) Histamine metabolites in cerebrospinal fluid of the rhesus monkey (Macaca mulatta): cistemal-lumbar concentration gradients. J. Neurochem. 50:1194–1199.CrossRefGoogle Scholar
  59. Prell G.D, Khandelwal J.K., Bums R.S., LeWitt P.A., and Green J.P. (1988b) Elevated levels of histamine metabolites in cerebrospinal fluid of aging, healthy humans. Comp. Gerontol. A. (Clin. Sci.) 2:114–119.Google Scholar
  60. Prell G.D., Khandelwal J.K., Hough L.B., and Green J.P. (1989a) pros-Methylimidazoleacetic acid in rat brain: its regional distribution and relationship to metabolic pathways of histamine. J. Neurochem. 52:561–567.CrossRefGoogle Scholar
  61. Prell G.D., Khandelwal J.K., Bums R.S., and Green J.P. (1989b) Diurnal fluctuations in levels of histamine metabolites in cerebrospinal fluid of rhesus monkey. Agents Actions 26:279–286.CrossRefGoogle Scholar
  62. Prell G.D., Khandelwal J.K., LeWitt P.A., and Green J.P. (1989c) Rostral-caudal concentration gradients of histamine metabolites in human cerebrospinal fluid. Agents Actions 26:267–272.CrossRefGoogle Scholar
  63. Prell G.D., Khandelwal J.K., Bums R.S., LeWitt P.A., and Green J.P. (1991a) Influence of age and sex on the levels of histamine metabolites and pros-methylimidazoleacetic acid in lumbar cerebrospinal fluid from healthy controls and neurological subjects. Arch. Gerontol. Geriatr. 12:1–12 and 71.CrossRefGoogle Scholar
  64. Prell G.D., Khandelwal J.K., Bums R.S., Blandina R, Morrishow A.M., and Green J.P. (199lb) Levels of pros-methylimidazoleacetic acid: correlation with severity of Parkinson’s disease in CSF of patients and with depletion of striatal dopamine and its metabolites in MPTP-treated mice. J. Neural Transm. [P-D Sect] 3:109–125.CrossRefGoogle Scholar
  65. Prell G.D., Green J.P., Kaufmann C.A., Khandelwal J.K., Morrishow A.M., Kirch D.G., Linnoila M., and Wyatt R.J. (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schiz. Res. 14:93–104, 268.Google Scholar
  66. Prell G.D., Hough L.B., Khandelwal J.K., and Green J.P. (1996a) Lack of precursor-product relationship between histamine and its metabolites in brain after histidine loading. J. Neurochem. 67:1938–1944.CrossRefGoogle Scholar
  67. Prell G.D., Douyon E., Sawyer W.F., and Morrishow A.M. (1996b) Disposition of hista-mine, its metabolites, and pros-methylimidazoleacetic acid in brain regions of rats chronically infused with α-fluoromethylhistidine. J. Neurochem. 66:2153–2159.CrossRefGoogle Scholar
  68. Prell G.D., Green J.P., Khandelwal J.K., Wyatt R.J., Lawson W.B., Jaeger A.C., Kaufmann C.A., and Kirch D.G. (1996c) pros-Methylimidazoleacetic acid in cerebrospinal fluid of patients with chronic schizophrenia: relationships to ratings of symptoms, ventricular brain ratios, and rates of urine excretion. Clin. Neuropharmacol. 19:415–419.CrossRefGoogle Scholar
  69. Prell G.D., Morrishow A.M., Douyon E., and Lee W.S. (1997) Inhibitors of histamine methylation in brain promote formation of imidazoleacetic acid, which interacts with GABA receptors. J. Neurochem. 68:142–151.PubMedCrossRefGoogle Scholar
  70. Radke J.M., Cummings P, and Vincent S.R. (1987) Effects of MPTP poisoning on central somatostatin and substance P levels in the mouse. Eur. J. Pharmacol. 134: 105–108.PubMedCrossRefGoogle Scholar
  71. Reynolds G.P., Pearson S.J., Halket J., and Sandler M. (1988) Brain quinolinic acid in Huntington’s disease. J. Neurochem. 50:1959–1960.PubMedCrossRefGoogle Scholar
  72. Riederer P, Sofic E., Rausch W.-D., Schmidt B., Reynolds G.P., Jellinger K., and Youdim M.B.H. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:515–520.PubMedCrossRefGoogle Scholar
  73. Schayer R.W., and Cooper J.A.D. (1956) Metabolism of 14C-histamine in man. J. Appl. Physiol. 9:481–483.PubMedGoogle Scholar
  74. Schwartz J.-C., Pollard H., Bischoff S., Rehault M.C., and Verdière-Sahuque M. (1971) Catabolism of 3H-histamine in the rat brain after intracisternal administration. Eur. J. Pharmacol. 16:326–335.PubMedCrossRefGoogle Scholar
  75. Schwartz R., Tamminga C.A., Kurlan R., and Shoulson I. (1988a) Cerebral spinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann. Neurol. 24: 580–582.CrossRefGoogle Scholar
  76. Schwartz R., Okuno E., White R.J., Bird E.D., and Whetselli W.O. (1988b) 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington’s disease victims. Proc. Natl. Acad. Sci. USA 85:4079–4081.CrossRefGoogle Scholar
  77. Schwartz R., Okuno E., and White R.J. (1989) Brain ganglia lesions in the rat: effects on quinolinic acid metabolism. Brain Res. 490:103–109.CrossRefGoogle Scholar
  78. Sharpless N.S., Muenter M.D., and Tyce G.M. (1975) Effects of L-DOPA on endogenous histamine metabolism. Med. Biol. 53:85–92.PubMedGoogle Scholar
  79. Sjölin J., Hjört G., Friman G., and Hambraeus L. (1987) Urinary excretion of 1-methylhistidine: A qualitative indicator of exogenous 3-methylhistidine and intake of meats from various sources. Metabolism 36:1175–1184.PubMedCrossRefGoogle Scholar
  80. Sjölin J., Stjernström H., Henneberg S., Hambraeus L., and Friman G (1989) Evaluation of urinary 3-methylhistidine excretion in infection by measurements of 1-methylhistidine and the creatinine ratios. Amer. J. Clin. Nutr. 49:62–70.PubMedGoogle Scholar
  81. Sonsalla P.K., and Heikkila R.E. (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol. 129:339–345.PubMedCrossRefGoogle Scholar
  82. Sundström E., Fredriksson A., and Archer T. (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson’s disease. Brain Res. 528:181–188.PubMedCrossRefGoogle Scholar
  83. Suzuki T., Hirano T., and Suyama M. (1987) Free imidazole compounds in white and dark muscles of migratory marine fish. Comp. Biochem. Physiol. 87B:615–619.Google Scholar
  84. Tham R. (1966a) Gas chromatographic analysis of histamine metabolites in urine. Excretion of labelled material in dogs. J. Chromatogr. 22:245–250.CrossRefGoogle Scholar
  85. Tham R. (1966b) Gas chromatographic analysis of histamine metabolites in urine. Quantitative determination of ring methylated imidazoleacetic acids in healthy man. J. Chromatogr. 23:207–216.CrossRefGoogle Scholar
  86. Tham R. (1966c) Liberation of histamine in man. Gas chromatography of ring methylated imidazoleacetic acids in urine. Scand. J. Clin. Lab. Invest. 18:603–616.CrossRefGoogle Scholar
  87. Tocci P.M., and Bessman S.P. (1967) Histidine peptiduria. In: Amino Acid Metabolism and Genetic Variation (Nyhan W. L., ed.), pp. 161–168. McGraw-Hill, New York.Google Scholar
  88. Weinberger D., Torrey E., Neophytides A., and Wyatt R. (1979) Lateral cerebral ventricu-lar enlargement in chronic schizophrenia. Arch. Gen. Psychiatr. 36:735–739.PubMedCrossRefGoogle Scholar
  89. Wilk S., Watson E., and Travis B. (1975) Evaluation of dopamine metabolism in rat stria-turn by a gas chromatographic technique. Eur. J. Pharmacol. 30:238–243.PubMedCrossRefGoogle Scholar
  90. Yahr M.D., Duvoisin R.C., Schear M.J., Barret R.E., and Hoehn M.M. (1969) Treatment ofParkinsonism with levodopa. Arch. Neurol. 21: 343–354.PubMedCrossRefGoogle Scholar
  91. Youdim M.B.H., and Riederer P. (1993) The role of iron in senescence of dopaminergic neurons in Parkinson’s disease. J. Neural Transm. (Suppl.) 40:57–67.Google Scholar
  92. Young V.R., Haverberg L.N., Bilmazes C., and Munro H.N. (1973) Potential use of 3-methylhistidine excretion as an index of progressive reduction in muscle protein catabolism during starvation. Metabolism 22:1429–1436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • George D. Prell

There are no affiliations available

Personalised recommendations