Cyclic Nucleotides: Synthesis by Adenylyl and Guanylyl Cyclases

  • Akio Yamazaki
Part of the Hormones in Health and Disease book series (HHD)

Abstract

Cyclic-3′5′-adenosine monophosphate (cAMP) and cyclic-3′5′-guanosine monophosphate (cGMP) are second messengers in intracellular signaling cascades. The intracellular levels of these cyclic nucleotides are regulated by two enzyme systems. Adenylyl cyclase and guanylyl cyclase synthesize cAMP and cGMP, respectively, and cyclic nucleotide phosphodiesterase hydrolyzes these cyclic nucleotides. Each cyclase system synthesizes only one of these cyclic nucleotides; however, various kinds of phosphodi- esterases hydrolyze both cAMP and cGMP (see chapter on cyclic nucleotide phosphodiesterases). Complete details of the functional relationship between cyclase systems and phosphodiesterase systems in most cells remain unclear. However, it is evident that a wide variety of exogenous stimuli, such as hormones, neurotransmitters, and physical and chemical signals, controls the intracellular level of these cyclic nucleotides by regulating these enzyme systems directly or indirectly. The physiological effects of these cyclic nucleotides are exerted through binding to a number of various proteins, including cyclic nucleotide-dependent protein kinases, cyclic nucleotide-gated channels, and cyclic nucleotide-regulated (or- bound) phosphodiesterases (see these chapters). Thus, the phosphorylated state of various proteins and the concentrations of ions and cyclic nucleotides in cells are controlled by extracellular signals. The presence of these cyclic nucleotide-binding proteins indicates the essential roles of these cyclic nucleotides in the organization of cellular functions. The basic concepts of adenylyl and guanylyl cyclase functions are described in this chapter.

Keywords

Mold Adenosine Carboxyl Retina Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed I and Barnstable CH. 1993. Differential laminar expression of particulate and soluble guanylate cyclase genes in rat retina. Exp Eye Res 56:51–62.CrossRefGoogle Scholar
  2. Aparicio JG and Applebury ML. 1996. The photoreceptor guanylate cyclase is an autophosphorylating protein kinase. J Biol Chem 271:27083–27089.CrossRefPubMedGoogle Scholar
  3. Bakalyar HA and Reed RR. 1990. Identification of a special adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406.CrossRefPubMedGoogle Scholar
  4. Brostrom CO, Huang YC, Breckenridge BM, and Wolff DJ. 1975. Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Natl Acad Sci USA 72:64–68.CrossRefPubMedGoogle Scholar
  5. Bushfield M, Shoshani I, and Johnson RA. 1990. Tissue levels, source, and regulation of 3′-AMP: An intracellular inhibitor of adenylyl cyclases. Mol Pharmacol 38:848–853.PubMedGoogle Scholar
  6. Cheung WY, Bradham LS, Lynch TJ, Lin YM, and Tallant EA. 1975. Protein activator of 3′:5′-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Commun 66:1055–1062.CrossRefPubMedGoogle Scholar
  7. Chinkers M and Garbers DL. 1989. The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394.CrossRefPubMedGoogle Scholar
  8. Chinkers M and Garbers DL. 1991. Signal transduction by guanylyl cyclases. Annu Rev Biochem 60:553–575.CrossRefPubMedGoogle Scholar
  9. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin H, Goeddel DV, and Schultz S. 1989. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83.CrossRefPubMedGoogle Scholar
  10. Cooper N, Liu L, Yoshida A, Pozduyakov N, Margulis A, and Sitaramayya A. 1996. The bovine rod outer segment guanylate cyclase, ROS-GC, is present in both outer segment and synaptic layers of the retina. J Mol Neurosci 6:211–222.CrossRefGoogle Scholar
  11. de Sauvage FJ, Camerato TR, and Goeddel DV. 1991. Primary structure and functional expression of the human receptor for Escherichie coli heat-stable entero-toxin. J Biol Chem 266:17912–17918.PubMedGoogle Scholar
  12. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, and Hurley JB. 1995. Cloning, sequencing, and expression of a 24-kDa Ca 2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206.CrossRefPubMedGoogle Scholar
  13. Duda T. Goraczniak RM, Sitaramayya A, and Sharma RK. 1993. Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 32:1391–1395.CrossRefPubMedGoogle Scholar
  14. Duda T. Goraczniak RM, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Pal-czewski K, Sitaramayya A, Baehr W, and Sharma RK. 1996. Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482.CrossRefPubMedGoogle Scholar
  15. Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Krupinski J, Gilman AG, and Reed RR. 1991. Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci USA 88:10173–10177.CrossRefPubMedGoogle Scholar
  16. Field M, Graf Jr LH, Larid WJ, and Smith PL. 1978. Heat-stable enterotoxin of Escherichia coli: in vivo effects on guanylate cyclase activity, cGMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75:2800–2804.CrossRefPubMedGoogle Scholar
  17. Forte LR and Currie MG. 1995. Guanylin: a peptide regulator of epithelial transport. FASEB J 9:643–650.PubMedGoogle Scholar
  18. Fulle HJ and Garbers DL. 1994. Guanylyl cyclases: a family of receptor-linked enzymes. Cell Biochem Fune 12:157–165.CrossRefGoogle Scholar
  19. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, and Schenk DB. 1988. Atrial natriuretic peptide clearance receptor: Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401.PubMedGoogle Scholar
  20. Garbers DL. 1989. Molecular basis of fertilization. Annu Rev Biochem 58:719–742.CrossRefPubMedGoogle Scholar
  21. Garbers DL and Lowe DG. 1994. Guanylyl cyclase receptors. J Biol Chem 269:30741–30744.PubMedGoogle Scholar
  22. Gerzer R, Bohme E, Hofmann F, and Schultz G. 1981. Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132:71–74.CrossRefPubMedGoogle Scholar
  23. Giuili G, Scholl U, Bulle F, and Guelleaen G. 1992. Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett 304:83–84.CrossRefPubMedGoogle Scholar
  24. Goraczniak RM, Duda T, Sitaramayya A, and Sharma RK. 1994. Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302:455–461.PubMedGoogle Scholar
  25. Gorezyca WA, Van Hooser JP, and Palczewski K. 1994. Nucleotide inhibitors and activators of retinal guanylyl cyclase. Biochemistry 33:3217–3222.CrossRefGoogle Scholar
  26. Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA. Fok KF, Smith CE, Duffin KL. Siegel NR, and Currie MG. 1993. Uroguanylin: Structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468.CrossRefPubMedGoogle Scholar
  27. Hayashi F and Yamazaki A. 1991. Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors. Proc Natl Acad Sci USA 88:4746–4750.CrossRefPubMedGoogle Scholar
  28. Helmreich EJM and Hofmann KP. 1996. Structure and function of proteins in G-protein-coupled signal transfer. Biochem Biophys Acta 1286:285–322.CrossRefPubMedGoogle Scholar
  29. Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch KD, Gausepohl H, Frank R. Schultz G, and Bohme E. 1990. Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity Chromatographie method. Eur J Biochem 190:273–278.CrossRefPubMedGoogle Scholar
  30. Ignarro LJ, Wood KS, and Wolin MS. 1984. Regulation of purified soluble guanylate cyclase by prophyrins and metalloporphyrins. Adv Cyclic Neucleotide Protein Phosphorylation Res 11:261–214.Google Scholar
  31. Iyengar R. 1993. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 7:768–775.PubMedGoogle Scholar
  32. Jacobowitz O, Chen J, Premont RT, and Iyengar R. 1993. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem 268:3829–3832.PubMedGoogle Scholar
  33. Kakiuchi S, Sobue K, Yamazaki R, Nagao S, Umaki S, Nozawa Y, Yazawa M, and Yagi K. 1983. Ca2+-dependent molecular proteins from Tetrahymena pyriformis, sea anemone, and scallop and guanylate cyclase activation. J Biol Chem 256:12455–12459.Google Scholar
  34. Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, and Murad F. 1986. Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241.PubMedGoogle Scholar
  35. Kawabe J, Iwami G, Ebina T, Ohno S, Katada T, Ueda Y, Homey CJ, and Ishikawa Y. 1994. Differential activation of adenylyl cyclase by protein kinase C isoenzyme J Biol Chem 269:16554–16558.PubMedGoogle Scholar
  36. Kim TD and Burstyn JN. 1994. Identification and partial purification of an endogenous inhibitor of soluble guanylyl cyclase from bovine lung. J Biol Chem 269:11540–15545.Google Scholar
  37. Klumpp S, Guerini D, Krebs J, and Schultz JE. 1987. Effect of tryptic calmodulin fragments on guanylate cyclase activity from Paramecium tetraurelia. Biochem Biophys Res Commun 142:857–864.CrossRefPubMedGoogle Scholar
  38. Koch KW. 1991. Purification and identification of photoreceptor guanylate cyclase. J Biol Chem 266:8634–8637.PubMedGoogle Scholar
  39. Koch KW, Lambrecht HG, Haberecht M. Redburn D, and Schmidt HH. 1994. Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthese and a soluble guanylyl cyclase in vertebrate photoreceptor cells. EMBO J 13:3312–3320.PubMedGoogle Scholar
  40. Kojima M, Hisaki K, Matsuo H, and Kangawa K. 1995. A new type soluble guanylyl cyclase, which contains a kinase-like domain: its structure and expression. Biochem Biophys Res Commun 217:993–1000.CrossRefPubMedGoogle Scholar
  41. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa N, Matsuo H, and Goed-del DV. 1991. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide. Science 252:120–123.CrossRefPubMedGoogle Scholar
  42. Kontalos Y and Yau KW. 1996. Regulation of sensitivity in vertebrate rod photore-ceptors by calcium. Trends Neurosci 19:73–81.CrossRefGoogle Scholar
  43. Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, and Gilman AG. 1989. Adenylyl cyclase amino acid sequence: possible channel or transporter-like structure. Science 244:1558–1564.CrossRefPubMedGoogle Scholar
  44. Laura RP, Dizhoor AM, and Hurley JB. 1996. The membrane guanylyl cyclase, Retinal guanylyl cyclase-1, is activated through its intercellular domain. J Biol Chem 271:11646–11651.CrossRefPubMedGoogle Scholar
  45. Liu XR, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, and Usukura J. 1994. Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59:761–768.CrossRefPubMedGoogle Scholar
  46. Londos C and Wolff J. 1977. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486.CrossRefPubMedGoogle Scholar
  47. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, and Hurley JB. 1995. Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5525–5539.CrossRefGoogle Scholar
  48. Lowe DG, Chang MS, Hellmiss R, Singh S, Chen E, Garbers DL, and Goeddel DV. 1989. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384.PubMedGoogle Scholar
  49. Maack T. 1992. Receptors of atrial natriuretic factor. Annu Rev Physiol 54:11–27.CrossRefPubMedGoogle Scholar
  50. Margulis A, Pozdnyakov N, and Sitaramayya A. 1996. Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun 218:243–247.CrossRefPubMedGoogle Scholar
  51. Mons N and Cooper DMF. 1993. Adenylate cyclases: critical foci in neuronal signaling. Mol Brain Res 22:236–244.CrossRefGoogle Scholar
  52. Nakane M, Arai K, Saheki S, Kuno T, Bucchler W, and Murad F. 1990. Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265:16841–16845.PubMedGoogle Scholar
  53. Paul AK, Marala RB, Jaiswal RK, and Sharma RK. 1987. Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226.CrossRefPubMedGoogle Scholar
  54. Pfeuffer T and Metzger H. 1982. 7-O-hemisuccinyl-deacetyl forskolin-Sepharose: a novel affinity support for purification of adenylate cyclase. FEBS Lett 146:369–375.CrossRefGoogle Scholar
  55. Pozdnyakov N, Yoshida A, Cooper NGF, Margulis A, Duda T, Sharma RK, and Sitaramayya A. 1995. A novel calcium-dependent activator of retinal rod outer segment membrane guanylate cyclase. Biochemistry 34:14279–14283.CrossRefPubMedGoogle Scholar
  56. Pugh EN Jr and Lamb TD. 1993. Amplification and kinetics of the activation steps in phototransduction. Biochem Biophys Acta 1141:111–149.CrossRefPubMedGoogle Scholar
  57. Radany EW, Gerzer R, and Garbers DL. 1983. Purification and characterization of particulate guanylate cyclase from sea urchin spermatozoa. J Biol Chem 258:8346–8351.PubMedGoogle Scholar
  58. Riordan JR, Rommens JM, Kerem, BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, and Tsui LC. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1066–1073.CrossRefPubMedGoogle Scholar
  59. Rosenzweig A and Scidman CE. 1991. Atrial natriuretic factor and related peptide hormones. Ann Rev Biochem 60:229–255.CrossRefPubMedGoogle Scholar
  60. Seamon KB, Padgett W, and Daly JW. 1981. Forskolin: unique diterpene activator of adenylate cyclase in membrane and in intact cells. Proc Natl Acad Sci USA 78:3363–3367.CrossRefPubMedGoogle Scholar
  61. Schultz S, Singh S, Bellet RA, Singh G. Tubb DJ, Chin H, and Garbers DL. 1989. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162.CrossRefGoogle Scholar
  62. Schultz S, Green CK, Yuen PST, and Garbers DL. 1990. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948.CrossRefGoogle Scholar
  63. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, and Lowe DG. 1992. Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9:727–737.CrossRefPubMedGoogle Scholar
  64. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, Chinkers M, Goeddel DV, and Garbers DL. 1988. Membrane guanylate cyclase: A putative cell surface receptor with homology to protein kinases. Nature 334:708–712.CrossRefPubMedGoogle Scholar
  65. Sitaramayya A, Marala RB, Hakki S, and Sharma RK. 1991. Interactions of nucleotide analogues with rod outer segment guanylate cyclase. Biochemistry 30:6742–6747.CrossRefPubMedGoogle Scholar
  66. Stone RA and Glembotski CC. 1986. Immunoactive atrial natriuretic peptide in the rat eye: Molecular forms in anterior uvea and retina. Biochem Biophys Res Commun 134:1022–1028.CrossRefPubMedGoogle Scholar
  67. Subbaraya I, Ruiz CC, Helekar BS, Zhao X, Gorezyca WA, Pettenati MJ, Rao PN, Palczewski K, and Baehr W. 1994. Molecular characterization of human and mouse photoreceptor guanylate cyclase-activating protein (GCAP) and chromosomal localization of the human gene. J Biol Chem 269:31080–31089.PubMedGoogle Scholar
  68. Tang WJ and Gilman AG. 1992. Adenylyl cyclases. Cell 70:869–872.CrossRefPubMedGoogle Scholar
  69. Tang WJ and Gilman AG. 1995. Construction of a soluble adenylyl cyclase activated by Gsα and forskolin. Science 268:1769–1772.CrossRefPubMedGoogle Scholar
  70. Tang WJ, Krupinski J, and Gilman AG. 1991. Expression and characterization of calmodulin activated adenylyl cyclase. J Biol Chem 266:8595–8603.PubMedGoogle Scholar
  71. Taussig R and Gilman AG. 1995. Mammalian membrane-bound adenylyl cyclases. J Biol Chem 270:1–4.CrossRefPubMedGoogle Scholar
  72. Thorpe DS and Garbers DL. 1989. The membrane form of guanylate cyclase. Ho-mology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264:6545–6549.PubMedGoogle Scholar
  73. Traylor TG and Sharma VS. 1992. Why NO? Biochemistry 31:2847–2849.CrossRefPubMedGoogle Scholar
  74. Vorherr T, Knopfel L, Hofmann F, Mollner S, Pfeuffer T, and Carafoli E. 1993. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 32:6081–6088.CrossRefPubMedGoogle Scholar
  75. Waldman SA and Murad F. 1987. Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196.PubMedGoogle Scholar
  76. Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Bohme E, Schultz G, and Koesling D. 1994. Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91:2592–2596.CrossRefPubMedGoogle Scholar
  77. Wolbing G and Schnetkamp PPM. 1995. Activation by PKC of the Ca2+-sensitive guanylyl cyclase in bovine retinal rod outer segments measured with an optical assay. Biochemistry 34:4689–4695.CrossRefGoogle Scholar
  78. Wu Z, Wong ST, and Storm DR. 1993. Modification of the calcium and calmodulin sensitivity of the Type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J Biol Chem 168:23766–23768.Google Scholar
  79. Xia Z, Refsdal CD, Merchant KM, Dorsa DM, and Storm DR. 1991. Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: Expression in areas associated with learning and memory. Neuron 6:431–443.CrossRefPubMedGoogle Scholar
  80. Yang RB, Footer DC, Garbers DL, and Fulle HJ. 1995. Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606.CrossRefPubMedGoogle Scholar
  81. Yoshida A, Pozdnyakov N, Dang L, Orselli SM, Reddy VN, and Sitaramayya A. 1995. Nitric oxide synthesis in retinal photoreceptor cells. Vis Neurosci 12:493–500.CrossRefPubMedGoogle Scholar
  82. Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, and Caron MG. 1987. Cross-talk between cellular signaling pathways suggested by phorbolester induced adenylate cyclase phosphorylation. Nature 327:67–70.CrossRefPubMedGoogle Scholar
  83. Yoshimura M and Cooper DMF. 1993. Type specific stimulation of adenylyl cyclase by protein kinase C. J Biol Chem 268:4604–4607.PubMedGoogle Scholar
  84. Zimmermann G and Taussig R. 1996. Protein kinase C alters the responsiveness of adenylyl cyclases to G-protein a and βγ subunits. J Biol Chem 271:27161–27166.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Akio Yamazaki

There are no affiliations available

Personalised recommendations