Krylov Subspace Iterations for Sparse Linear Systems

  • Are Magnus Bruaset


This chapter is concerned with efficient methods for iterative solution of large sparse systems of linear equations, typically derived from the discretization of an elliptic boundary value problem. In particular, attention is given to the family of Krylov subspace methods, as well as to several preconditioning strategies that are suitable for improving the convergence rates of such iterations.


Conjugate Gradient Method Krylov Subspace Conjugate Gradient Algorithm Krylov Subspace Method Lanczos Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. Adaptive polynomial preconditioning for Hermitian linear systems. BIT, 29:583–609, 1989.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal., 27:1542–1568, 1990.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    O. Axelsson. A generalized SSOR method. BIT, 13:443–467, 1972.MathSciNetCrossRefGoogle Scholar
  4. [4]
    O. Axelsson. Incomplete block matrix factorization preconditioning methods. The ultimate answer? J. Comput. Appl. Math., 12/13:3–18, 1985.MathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods. Numer. Math., 48:479–498, 1986.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. A. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.Google Scholar
  7. [7]
    J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematics Series. Addison-Wesley Longman, 1993.Google Scholar
  8. [8]
    C. Brezinski, M. R. Zaglia, and H. Sadok. Avoiding breakdown and near-breakdown in Lanczos type algorithms. Numer. Algorithms, 1:261–284, 1991.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. M. Bruaset. A Survey of Preconditioned Iterative Methods, volume 328 of Pitman Research Notes in Mathematics Series. Addison-Wesley Longman, 1995.Google Scholar
  10. [10]
    A. M. Bruaset and H. P. Langtangen. Object-oriented design of preconditioned iterative methods in Diffpack. To appear in ACM Transactions on Mathematical Software, 1997.Google Scholar
  11. [11]
    A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solving partial differential equations; Diffpack. This volume, page 61.Google Scholar
  12. [12]
    A. M. Bruaset, H. P. Langtangen and G. Zumbusch. Domain decomposition and multilevel methods in Diffpack. Report STF42 A96017, SINTEF Applied Mathematics, 1996. (Submitted for publication).Google Scholar
  13. [13]
    A. M. Bruaset and A. Tveito. RILU preconditioning; A computational study. J. Comput. Appl. Math., 39:259–275, 1992.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. M. Bruaset, A. Tveito, and R. Winther. On the stability of relaxed incomplete LU factorizations. Math. Comp., 54:701–719, 1990.MathSciNetMATHGoogle Scholar
  15. [15]
    H. C. Elman. A stability analysis of incomplete LU factorizations. Math. Comp., 47:191–217, 1986.MathSciNetMATHGoogle Scholar
  16. [16]
    V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal., 21:352–362, 1984.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical Analysis, Dundee 1975, volume 506 of Lect. Notes in Math., pages 73–89. Springer-Verlag, 1976.MathSciNetGoogle Scholar
  18. [18]
    R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems. SIAM J. Sci. Comput., 14:470–482, 1993.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. In A. Iserles, editor, Acta Numerica 1992, pages 1–44. Cambridge University Press, 1992.Google Scholar
  20. [20]
    R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math., 60:315–339, 1991.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Review, 31:50–102, 1989.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, 1989.Google Scholar
  23. [23]
    A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm. Numer. Math., 33:181–194, 1979.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    A. Greenbaum. Diagonal scalings of the Laplacian as preconditioners for other elliptic differential operators. SIAM J. Matrix Anal., 13:826–846, 1992.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    I. Gustafsson. On first order factorization methods for the solution of problems with mixed boundary conditions and problems with discontinuous material coefficients. Research Report 77.13R, Chalmers University of Technology and the University of Gothenburg, Sweden, 1977.Google Scholar
  26. [26]
    M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and related algorithms, part I. SIAM J. Matrix Anal., 13:594–639, 1992.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    W. Joubert. Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM J. Matrix Anal., 13:926–943, 1992.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    E. F. Kaasschieter. A general finite element preconditioning for the conjugate gradient method. BIT, 29:824–849, 1989.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Stand., 49:33–53, 1952.MathSciNetCrossRefGoogle Scholar
  31. [31]
    J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.MathSciNetMATHGoogle Scholar
  32. [32]
    N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal., 13:778–795, 1992.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12:617–629, 1975.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    U. Rude. Mathematical and Computational Techniques for Multilevel Adaptive Methods. SIAM, 1993.Google Scholar
  35. [35]
    Y. Saad and M. H. Scultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.MATHCrossRefGoogle Scholar
  36. [36]
    B. Smith, P. Bjørstad and W. Gropp. Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.Google Scholar
  37. [37]
    P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 10:36–52, 1989.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    C. H. Tong. A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems. Report SAND91-8240B, Sandia National Labs., Livermore, 1992.Google Scholar
  39. [39]
    H. A. van der Vorst. High performance preconditioning. SIAM J. Sci. Stat. Comput., 10:1174–1185, 1989.MATHCrossRefGoogle Scholar
  40. [40]
    P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of 4th Symposium of Numerical Simulation of Reservoir Performance of the SPE, 1976. (Paper SPE 5729).Google Scholar
  41. [41]
    G. Zumbusch. Multigrid Methods in Diffpack. Report STF42 A96016, SINTEF Applied Mathematics, Oslo, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Are Magnus Bruaset
    • 1
  1. 1.SINTEFBlindern, OsloNorway

Personalised recommendations