Skip to main content

Finite Element Methods for Two-Phase Flow in Heterogeneous Porous Media

  • Chapter
Numerical Methods and Software Tools in Industrial Mathematics

Abstract

A mathematical model for the simultaneous flow of oil and water in porous rock formations is considered. The elliptic pressure equation and the hyperbolic saturation equation are discretized by various finite element methods of streamline diffusion type in space, and by finite differences in time. The main purpose of the chapter is to examine different solution strategies in four flow cases involving porous formations with different type of heterogeneities in absolute and relative permeability as well as in porosity. Fully implicit methods represent the most robust and reliable solution approach in challenging flow cases. Simpler solution strategies may, however, be satisfactorily robust and more efficient in problems with less severe heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. B. Allen III, G. A. Behie, and J. A. Trangenstein. Multiphase flow in porous media. Lecture notes in engineering. Springer-Verlag, 1988.

    Google Scholar 

  2. K. Aziz and A. Settari. Petroleum Reservoir Simulation. Applied Science Publishers, first edition, 1979.

    Google Scholar 

  3. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, P. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.

    Google Scholar 

  4. A. N. Brooks and T. J. R. Hughes. Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equation. Comp. Meth. Appl. Mech. Eng., 60(32):199–259, 1982.

    Article  MathSciNet  Google Scholar 

  5. A. M. Bruaset. A Survey of Preconditioned Iterative Methods in Pitman Research Notes in Mathematics Series. Longman House, to appear in april edition, 1995.

    Google Scholar 

  6. A. M. Bruaset and A. Tveito. RILU preconditioning; A computational study. J. Comput. Appl. Math., 39:259–275, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Chavent and J. Jaffre. Mathematical Methods and Finite Elements for Reservoir Simulations. North-Holland, Amsterdam, 1986.

    Google Scholar 

  8. K.Y. Choe and K.A. Holsapple. The discontinuous finite element method with the Taylor-Galerkin approach for nonlinear hyperbolic conservation laws. Comp. Meth. in Appl. Mech. and Eng., 26(95):141–167, 1992.

    Article  MathSciNet  Google Scholar 

  9. J. Donea. A Taylor-Galerkin method for convective transport problems. Int. J. Num. Meth. Eng., 20:101–119, October 1984.

    Article  MATH  Google Scholar 

  10. Exploration Consultants Ltd., Oxfordshire RG 4PS, England. ECLIPSE Reference Manual, Version 88/09, 1988.

    Google Scholar 

  11. C. A. J. Fletcher. Computational techniques for fluid dynamics, vol I and II. Springer-Verlag, 1988.

    Google Scholar 

  12. E. Gundersen. An Investigation of Some Finite Element Methods for Two-Phase Porous Media Flow. Cand. Scient. Thesis in Mechanics at the Department of Mathematics, University of Oslo, 1995.

    Google Scholar 

  13. T. J. R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation for computational fluid dynamics: II. beyond SUPG. Comput. Methods Appl Mech. Eng., 14(54):341–355, 1986.

    Article  MathSciNet  Google Scholar 

  14. H. P. Langtangen. Conjugate gradient methods and ILU preconditioning of non-symmetric matrix systems with arbitrary sparsity patterns. Int. J. Num. Meth. Fluids, 10:213–223, 1989.

    Article  MathSciNet  Google Scholar 

  15. H. P. Langtangen. Implicit finite element methods for two-phase flow in oil reservoirs. Int. J. Num. Meth. Fluids, 20:651–681, 1990.

    Article  MathSciNet  Google Scholar 

  16. D. Peaceman. Fundamentals of numerical reservoir simulation. Elsevier Scientific Publishing Company, Amsterdam, 1977.

    Google Scholar 

  17. H. R. Tamaddon-Jahromi, M. F. Ding, M. F. Webster, and P. Townsend. A Taylor-Galerkin finite element method for Non-Newtonian flows. Int. J. Num. Meth. Engng., 34:741–757, 1992.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gundersen, E., Langtangen, H.P. (1997). Finite Element Methods for Two-Phase Flow in Heterogeneous Porous Media. In: Dæhlen, M., Tveito, A. (eds) Numerical Methods and Software Tools in Industrial Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1984-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1984-2_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7367-7

  • Online ISBN: 978-1-4612-1984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics