An Introduction to the Deformation Theory of Galois Representations

  • Barry Mazur

Abstract

Before this conference I had never been to any mathematics gathering where so many people worked as hard or with such high spirits, trying to understand a single piece of mathematics.

Keywords

Filtration Assure Resid Hull Tate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Az]
    Azumaya, G., On maximally central algebras, Nagoya Math. J. 2 (1951),119–150.MathSciNetMATHGoogle Scholar
  2. [B 1]
    Boston, N., Explicit deformation of Galois representations., Invent. Math. 103 (1991), 181–196.MathSciNetCrossRefGoogle Scholar
  3. [B 2]
    Boston, N., A refinement of the Faltings-Serre method„ Number Theory (S. David, ed.), Cambridge Univ. Press, 1995, pp. 61–68.Google Scholar
  4. [B-M]
    Boston, N., Mazur, B., Explicit deformations of Galois representations,Algebraic Number Theory — in honor of K. Iwasawa (Coates, Greenberg, Mazur, Satake, eds.), Advanced Studies in Pure Mathematics 17 Academic Press, 1989, pp. 1–21.Google Scholar
  5. [B-U]
    Boston, N., Ullom, S., Representations related to CM elliptic curves, Math.Proc. Camb. Phil. Soc. 113 (1993), 71–85.MathSciNetMATHCrossRefGoogle Scholar
  6. [Bourb 1]
    Bourbaki, N., Algebre, Ch. VIII, Hermann 1958.Google Scholar
  7. [Bourb 2]
    Bourbaki, N., Algebre commutative, Ch. I-IV, Masson, 1985.Google Scholar
  8. [By]
    Byrne, D., Stop Making Sense, Video, The Talking Heads.Google Scholar
  9. [Ca]
    Carayol, H., Formes modulaires et représentations Galoisiennes à valeursdans un anneau local complet„ p-adic Monodromy and the Birch-Swinnerton-Dyer Conjecture (Mazur and Stevens, eds.), Contemporary Mathematics 165 Amer. Math. Soc., 1994, pp. 213–237.Google Scholar
  10. [C]
    Coleman, R., P-adic Banach spaces and families of modular forms, Invent.math. (to appear).Google Scholar
  11. [Co]
    Conrad, B., The flat deformation functor,(this volume).Google Scholar
  12. [C-R]
    Curtis, C., Reiner, I., Representation theory of finite groups and associative algebras, Wiley, 1962.MATHGoogle Scholar
  13. [D-D-T]
    Darmon, H., Diamond, F., Taylor, R., Fermat’s Last Theorem, Current De-velopments in Mathematics (Bott, Jaffe, Yau, eds.), (1995), International Press., 1995, pp. 1–108.Google Scholar
  14. [D-W]
    Doran, C., Wong, S., The deformation theory of Galois representations,in preparation..Google Scholar
  15. [Fo 1]
    Fontaine, J.-M., Groupes p-divisibles sur les corps locaux, Astérisque, Soc. Math. de France 47–48 (1977).Google Scholar
  16. [Fo 2]
    Fontaine, J.-M., Groupes finis commutatifs sur les vecteurs de Witt, C.R. Acad. Sci. Paris 280 (1975), 1423–1425.MathSciNetMATHGoogle Scholar
  17. [F-L]
    Fontaine, J.-M., Laffaille, Construction de représentations p-adiques, Ann. Scient. E.N.S. 15 (1982), 547–608.MathSciNetMATHGoogle Scholar
  18. [F-M]
    Fontaine, J.-M., Mazur, B., Geometric Galois representations, Proceedings of the Conference on Elliptic Curves and Modular Forms (Coates, Yau, eds.), Hong Kong, Dec. 18–21 1993, International Press., 1995, pp. 47–78.Google Scholar
  19. [Fr]
    Frobenius, G., Über die Primfactoren der Gruppendeterminante, Sitz. Preuss. Akad. Berlin (1896), 1343–1382 (pp. 38–77 in Ges. Abh. III).Google Scholar
  20. [G]
    Gouvêa, F. Arithmetic of p-adic modular forms,Lecture Notes in Math. 1304 Springer-Verlag, 1988.MATHGoogle Scholar
  21. [G-M]
    Gouvêa, F., Mazur, B. Families of modular eigenforms, Mathematics of Computation 58 (1992), 793–805.MathSciNetMATHCrossRefGoogle Scholar
  22. [Gr]
    Grothendieck, A., Éléments de Géométrie Algébrique IV (Étude locale des schémas et des morphismes de schémas), Publ. Math. IHES 20 (1964).Google Scholar
  23. [H]
    Hida, H., Elementary theory of L-functions and Eisenstein series, London Math. Soc. (1993).MATHCrossRefGoogle Scholar
  24. [Ha]
    Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977.MATHGoogle Scholar
  25. [K-O]
    Knus, M.-A., Ojanguren, M., Théorie de la descente et algébres d’Azumaya, Lecture Notes in Math 389, Springer-Verlag, 1974.MATHGoogle Scholar
  26. [L-M]
    Lubotzky, A., Magid, A., Varieties fo representations of finitely generated groups, Memoirs of the A.M.S. 58 (1985).Google Scholar
  27. [L-S]
    Lenstra, H., de Smit, B., Explicit construction of universal deformation rings, (this volume).Google Scholar
  28. [Mat]
    Matsumura, H., Commutative Algebra, W.A. Benjamin Co., 1970.MATHGoogle Scholar
  29. [M 1]
    Mazur, B., Deforming Galois representations, Galois groups over Q (Ihara, Ribet, Serre, eds.), MSRI Publications 16, Springer-Verlag, 1989, pp. 385–437.Google Scholar
  30. [M 2]
    Mazur, B.Two-dimensional p-adic Galois representations unramified away from p, Compositio Math 74 (1990), 115–133.MathSciNetMATHGoogle Scholar
  31. [M 3]
    An “infinite fern” in the universal deformation space of Galois representations, Proceedings of the Journées Arithmeétiques, held in Barcelona, July 1995. (to appear).Google Scholar
  32. [M T]
    Mazur, B., Tilouine, J., Représentations galoisiennes, différentielles de Kähler et conjectures principales, Publ. Math. IHES 71 (1990), 65–103.MathSciNetMATHGoogle Scholar
  33. [Ny]
    Nyssen, L., Pseudo-représentations, preprint 1994.Google Scholar
  34. [P 1]
    Procesi, C., Rings with Polynoimal Identities, Dekker, 1973.Google Scholar
  35. [P 2]
    Procesi, C., Representations of algebras, Israel J. Math. 19 (1974), 169–182.MathSciNetCrossRefGoogle Scholar
  36. [Ram]
    Ramakrishna, R., On a variation of Mazur’s deformation functor, Com-positio Math 87 (1993), 269–286.MathSciNetMATHGoogle Scholar
  37. [Roua]
    Rouquier, R., Caractérisation des caractéres et pseudo-caractéres, preprint 1995.Google Scholar
  38. [Sch]
    Schlessinger, M., Functors on Artin rings, Trans. A.M.S. 130 (1968), 208–222.MathSciNetMATHCrossRefGoogle Scholar
  39. [Se 1]
    Serre, J.-P., Corps Locaux, 2nd ed., Hermann, 1968.Google Scholar
  40. [Se 2]
    Serre, J.-P.,Représentations linéaires sur des anneaux locaux (d’aprés Cara-yol), preprint, 1995.Google Scholar
  41. [Se 3]
    Serre, J.-P.,Points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972),259–331.MathSciNetMATHCrossRefGoogle Scholar
  42. [T]
    Taylor, R., Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), 281–332.MathSciNetMATHCrossRefGoogle Scholar
  43. [T-W]
    Taylor, R., Wiles, A., Ring-theoretic properties of certain Hecke algebras,Annals of Math. 141 (1995), 553–572.MathSciNetMATHCrossRefGoogle Scholar
  44. [W]
    Wiles, A., Modular elliptic curves and Fermat’s Last Theorem, Annals of Math. 141 (1995), 443–551.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Barry Mazur

There are no affiliations available

Personalised recommendations