Remarks on the History of Fermat’s Last Theorem 1844 to 1984

  • Michael Rosen

Abstract

It is arguably true that Fermat’s Last Theorem (FLT) has been the most famous of all mathematical problems for at least three centuries. There has been debate about whether it is a serious and important problem or merely a curiosity, but there can be no denying its popularity. Generations of mathematicians, both professional and amateur, have tried their hand at solving it. These efforts have resulted in a mighty body of theory with many deep and important results. Nevertheless, until 1984, when G. Frey connected the problem in an intimate way with the arithmetic theory of elliptic curves and the conjecture of Taniyama-Shimura-Weil (after earlier work in the same direction by Y. Helloguarch), a solution seemed as far away as ever.

Keywords

Tate Rosen Fermat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [AT]
    E. Artin and J. Tate, Class Field Theory, Benjamin Publishers,New York, 1967.Google Scholar
  2. [B]
    E.T. Bell, The Last Problem, Simon and Schuster, New York,1961.Google Scholar
  3. [BTW]
    J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, in Computers in Number Theory, Academic Press, New York, 1971, 213–222.Google Scholar
  4. [BS]
    Z. Borevich and I. Shafarevich, Number Theory, Academic Press,London and New York, 1966.Google Scholar
  5. [BCEM]
    J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkyla, Irregular Primes and Cyclotomic Invariants to Four Million, Math. Comp., 61, No. 203 (1993), 151–153.MathSciNetMATHCrossRefGoogle Scholar
  6. [CF]
    J. Cassels and A. Fröhlich, ed., Algebraic Number Theory, Aca-demic Press, London and New York, 1967.MATHGoogle Scholar
  7. [CR]
    G. Cornell and M. Rosen, Cohomological analysis of the class group extension problem, Proceedings of the Queen’s Number theory Conference 1979, in Queen’s papers in Pure and Appl. Math., No. 54 (1980), 287–308.MathSciNetGoogle Scholar
  8. [Ed1]
    H.M. Edwards, Fermat’s Last Theorem, GTM 64, Springer Verlag,New York-Berlin-Heidelberg, 1977.MATHCrossRefGoogle Scholar
  9. [Ed2]
    H.M. Edwards, The background of Kummer’s proof of Fermat’s Last Theorem for regular primes, Arch. History Exact Sci. 14 (1975), 219–236.MathSciNetMATHCrossRefGoogle Scholar
  10. [Ed3]
    H.M. Edwards, Postscript to “The background of Kummer’s proof…,” Arch. History Exact Sci. 17 (1977), 381–394.MathSciNetCrossRefGoogle Scholar
  11. [Ed4]
    H.M. Edwards, Review of “Ernst Edward Kummer, Collected Papers, Vol. I,” in Historia Math., Vol. 4, No. 4 (1977), 475–478.Google Scholar
  12. [G]
    C.F. Gauss, Theorie der biquadratische Reste I and II, in Arithmetischen Untersuchungen, Chelsea Publishing Co., Bronx, New York, 1965.Google Scholar
  13. [Gr]
    N. Greenleaf, On Fermat’s Equation in C(t), Amer. Math.Monthly, 76 (1969), 808–809.MathSciNetMATHCrossRefGoogle Scholar
  14. [H]
    D. Hilbert, Die theorie der algebraischen Zahlkörper, in Gesammelte Abhandlungen, Vol. I, Chelsea Publishing Co., New York, 1965, 63–363.Google Scholar
  15. [He]
    J. Herbrand, Sur les classes des corps circulaires, J. Math. Pures Appl.(9), 11 (1932), 417–441.MATHGoogle Scholar
  16. [IR]
    K. Ireland and M. Rosen, A Classical Introduction to Number Theory, GTM 84, Springer Verlag, New York-Berlin-Heidelberg, 1982.Google Scholar
  17. [Ko]
    N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions, GTM 58, Springer Verlag, New York-Berlin-Heidelberg, 1979.Google Scholar
  18. [Ku]
    E. Kummer, Collected Papers (ed. by A. Weil), Springer Verlag, New York-Berlin-Heidelberg, 1975.Google Scholar
  19. [La]
    E. Landau, Vorlesungen über Zahlentheorie, Vol. III, Chelsea Pub-lishing Co., 1947.Google Scholar
  20. [Lg1]
    S. Lang, Cyclotomic Fields I and II, Combined Second Edition,GTM 121, Springer Verlag, New York, 1990.Google Scholar
  21. [Lg2]
    S. Lang, Algebraic Number Theory, GTM 110, Springer Verlag, New York-Berlin-Heidelberg, 1986.CrossRefGoogle Scholar
  22. [LS]
    H. W. Lenstra, Jr. and P. Stevenhagen, Class Field Theory and the First Case of Fermat’s Last Theorem, this volumeGoogle Scholar
  23. [Le]
    H.W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. reine angew. Math., 199 (1958), 165–174.MathSciNetMATHGoogle Scholar
  24. [M]
    B. Mazur, Book review of “Ernst Edward Kummer, Collected Papers, Vol. I and II,” in Bull. Amer. Math. Soc., Vol. 83, No. 5 (1977), 976–986.MathSciNetGoogle Scholar
  25. [Ri]
    P. Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer Verlag, New York-Heidelberg-Berlin, 1979.MATHCrossRefGoogle Scholar
  26. [R]
    K. Ribet, A Modular Construction of Unramified p-extensions of Q(p„), Invent. Math., 34 (1976), 151–162.MathSciNetMATHCrossRefGoogle Scholar
  27. [W]
    L. Washington, Introduction to Cyclotomic Fields, GTM 83, Springer Verlag, New York-Heidelberg-Berlin, 1982.CrossRefGoogle Scholar
  28. [Wi]
    A. Wiles, Modular Curves and Class Groups of Q(&#x03C2p), Invent. Math., 58 (1980), 1–35.MathSciNetMATHCrossRefGoogle Scholar
  29. [V]
    H.S. Vandiver, Fermat’s Last Theorem: Its history and the na-ture of the known results concerning it, Amer. Math. Monthly, 53 (1946), 555–578; 60 (1953) 164–167.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michael Rosen

There are no affiliations available

Personalised recommendations