Skip to main content

Explicit Families of Elliptic Curves with Prescribed Mod N Representations

  • Chapter

Abstract

In Part 1 we explain how to construct families of elliptic curves with the same mod 3, 4, or 5 representation as that of a given elliptic curve over Q. In §4 we give equations for the families in the mod 4 case. The mod 3 and mod 5 cases were given in [9] (see also [8]). The results remain true (with the same proofs) with the field of rational numbers replaced by any field whose characteristic does not divide the level.

Keywords

  • Elliptic Curve
  • Elliptic Curf
  • Number Field
  • Prime Divisor
  • Cyclic Subgroup

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  2. F. Diamond, On deformation rings and Hecke rings,preprint.

    Google Scholar 

  3. F. Diamond, K. Kramer, Modularity of a family of elliptic curves, Math. Research Letters 2 (1995), 299–305.

    MathSciNet  MATH  Google Scholar 

  4. A. Grothendieck, Modèles de Néron et monodromie,in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313–523.

    CrossRef  Google Scholar 

  5. D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193–237.

    MathSciNet  MATH  Google Scholar 

  6. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 133–186.

    Google Scholar 

  7. K. Rubin, Modularity of mod 5 representations,this volume.

    Google Scholar 

  8. K. Rubin, A. Silverberg, A report on Wiles’ Cambridge lectures, Bull. Amer. Math. Soc. (N. S.) 31, no. 1 (1994), 15–38.

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. K. Rubin, A. Silverberg, Families of elliptic curves with constant mod p representations, in Conference on Elliptic Curves and Modular Forms, Hong Kong, December 18–21, 1993, Intl. Press, Cambridge, Massachusetts, 1995, pp. 148–161.

    Google Scholar 

  10. J-P. Serre, Cohornologie galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag, Berlin-New York, 1965.

    Google Scholar 

  11. J-P. Serre, J. Tate, Good reduction of abelian varieties,Ann. of Math. 88 (1968), 492–517.

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, 1971.

    Google Scholar 

  13. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. T. Shioda, On rational points of the generic elliptic curve with level N structure over the field of modular functions of level N, J. Math. Soc. Japan 25 (1973), 144–157.

    CrossRef  MathSciNet  Google Scholar 

  15. A. Silverberg, Yu. G. Zarhin, Semistable reduction and torsion subgroups of abelian varieties, Ann. Inst. Fourier 45 (1995), 403–420.

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. A. Silverberg, Yu. G. Zarhin, Variations on a theme of Minkowski and Serre, J. Pure and Applied Algebra 111 (1996), 285–302.

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. J. Silverman, The Arithmetic of Elliptic Curves,Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1986.

    MATH  Google Scholar 

  18. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), 553–572.

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141 (1995), 443–551.

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silverberg, A. (1997). Explicit Families of Elliptic Curves with Prescribed Mod N Representations. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat’s Last Theorem. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1974-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1974-3_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98998-3

  • Online ISBN: 978-1-4612-1974-3

  • eBook Packages: Springer Book Archive