Skip to main content

Astronomical (Heteroscedastic) Measurement Errors: Statistical Issues and Problems

  • Conference paper
Statistical Challenges in Modern Astronomy II
  • 479 Accesses

Abstract

A statistical model for astronomical data with measurement errors is described and discussed. Attention is drawn to the distinction between two types of measurement errors according to whether or not the magnitude (variance) of the measurement error depends on the measurement. It is emphasized that when the magnitude of the measurement error does not depend on the measurement, more efficient procedures based on suitable weighting of the observations are possible. However, when the magnitude of the measurement error depends on the measurement, weighting biases the procedure. A method for comparing multivariate data sets, valid for both kinds of measurement error, is described and a variety of other statistical problems are considered and solutions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akritas, M. G. (1996). On the use of nonparametric regression techniques for fitting parametric regression models. Biometrics, press.

    Google Scholar 

  2. Akritas, M. G., & Bershady, M. A. (1996). Linear regression for astronomical data with measurement errors and intrinsic scatter. The Astrophysical Journal, In press.

    Google Scholar 

  3. Bevington, P. R., & Robinson, D. K. (1992). Data Reduction and Error Analysis for the Physical Sciences. Second edition, McGraw-Hill, New York.

    Google Scholar 

  4. Boggs, P. T., Donaldson, J. R., Byrd, R. H., & Schnabel, R. B. (1990). ODRPACK: Software for weighted orthogonal distance regression. ACM Trans. Math. Software, 15, 348–364.

    Article  Google Scholar 

  5. Breiman, L. (1968). Probability. Addison-Wesley, Reading.

    MATH  Google Scholar 

  6. Carroll, J. A. (1933). The spectroscopic determination of stellar rotation and its effect on line profiles. Mon. Not. Royal Astr. Soc., 93, 478–507.

    Google Scholar 

  7. Carroll, R. J., & Hall, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association, 83, 1184–1186.

    Article  MathSciNet  MATH  Google Scholar 

  8. Carroll, R. J., & Ruppert, D. (1988). Transformation and Weighting in Regression (First edition). Chapman and Hall, New York.

    MATH  Google Scholar 

  9. Cornwell, T. J., & Perley, R. A. e. (1991). Radio Interferometry, Theory, Techniques, and Applications. Astro. Soc. Pacific, San Francisco.

    Google Scholar 

  10. Diggle, P. J., & Hall, P. (1993). A Fourier approach to nonparametric de-convolution of a density estimate. Journal of the Royal Statistical Society, Ser. B, 55, 523–531.

    MathSciNet  MATH  Google Scholar 

  11. Dixon, S. L., & McKean, J. W. (1995). Rank-based analysis of the hetroscedastic linear model. The Journal of the American Statistical Association, in press.

    Google Scholar 

  12. Eddington, A. S. (1913). On a formula for correcting statistics for the effects of a known probable error of observation. Mon. Not. Royal Astro. Soc., 73, 359.

    MATH  Google Scholar 

  13. Fan, J., & Truong, Y. K. (1993). Nonparametric regression with errors in variables. The Annals of Statistics, 21, 1900–1925.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, J. Q. (1991). On the optimal rates of convergence for nonparametric deconvolution problem. The Annals of Statistics, 19, 1257–1272.

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigelson, E. D., & Babu, G. J. (1992). Linear regression in astronomy. II. Astrophys. J., 397, 55–67.

    Article  Google Scholar 

  16. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II (Second edition). Wiley. New York.

    MATH  Google Scholar 

  17. Kiefer, J., & Wolfowitz. J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 886–906.

    Google Scholar 

  18. Labeyrie, A. (1970). Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images. Astron. Astrophys., 6, 85–87.

    Google Scholar 

  19. Lindsay, B. G. (1995). Mixture Models: Theory, Geometry, and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics, California.

    MATH  Google Scholar 

  20. Liu, M. C., & Taylor. R. L. (1989). A consistent nonparametric density estimator for the deconvolution problem. Canadian Journal of Statistics, 17, 427–438.

    Article  MATH  Google Scholar 

  21. MacDonald, J. R., & Thompson. W. J. (1992). Least-squares fitting when both variables contain errors: Pitfalls and possibilities..4mer. J. Physics, 60, 60–73.

    Google Scholar 

  22. McLachlan, G. J., & Basford, K. E. (1988). Mixture Models. Dekker, New York.

    MATH  Google Scholar 

  23. Robbins, H. (1950). A generalization of the method of maximum likelihood: Estimating a mixing distribution (Abstract). Annals of Mathematical Statistics, 21, 314–315.

    Article  MathSciNet  Google Scholar 

  24. Robbins, H. (1956). An empirical Bayes approach to statistics. In J., N. (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 157–163. Prentice-Hall. New York.

    Google Scholar 

  25. Stefanski, L. A., & Carroll, R. A. (1990). Deconvoluting kernel density estimators. Statistics, 21, 169–184.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tierney, L., & Lambert, D. (1984). Asymptotic efficiency of estimators of functionals of mixed distributions. The Annals of Statistics. 12. 1380–1387.

    Article  MathSciNet  MATH  Google Scholar 

  27. Titterington, D. M., Smith, A. F. M.. & Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley. New York.

    MATH  Google Scholar 

  28. Zhang, C. H. (1990). Fourier methods for estimating mixing densities and distributions. The Annals of Statistics, 18, 806–831.

    Article  MathSciNet  MATH  Google Scholar 

  29. Terence J. Deeming. The analysis of linear correlation in astronomy. In Arthur Beer, editor, Vistas in Astronomy, volume 10, pages 125–142. Pergamon Press, New York, 1968.

    Google Scholar 

  30. Wayne A. Fuller. Measurement Error Models. John Wiley & Sons, Inc., New York, 1987.

    Google Scholar 

  31. Maurice Kendall and Alan Stuart. The Advanced Theory of Statistics, Volume 2. Charles Griffin & Co., Ltd., London, 1979.

    Google Scholar 

  32. T.J. Loredo. The promise of Bayesian inference for astrophysics. In E.D. Feigelson and G.J. Babu, editors. Statistical Challenges in Modern Astronomy, pages 275–306. Springer-Verlag, New York, 1992.

    Chapter  Google Scholar 

  33. Arnold Zellner. An Introduction to Bayesian Inference in Econometrics. Krieger Publishing Co., Florida, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Akritas, M.G. (1997). Astronomical (Heteroscedastic) Measurement Errors: Statistical Issues and Problems. In: Babu, G.J., Feigelson, E.D. (eds) Statistical Challenges in Modern Astronomy II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1968-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1968-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7360-8

  • Online ISBN: 978-1-4612-1968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics