Skip to main content

Nonparametric Methods for Time Series and Dynamical Systems

  • Conference paper
Statistical Challenges in Modern Astronomy II

Abstract

We present different approaches to reconstruct a chaotic map and to identify existence of chaos. Using nonparametric techniques, we construct - from observational data - estimates of the embedding dimension, the chaotic map, the invariant measure and the Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Aleksic (1991): “Estimating the embedding dimension”, Physica D, 52, 362–368.

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. D. Bosq, D. Guégan (1994): “Estimation of the embedding dimension of a dynamical system. n = BO 9451 Preprint INSEE. Paris.

    Google Scholar 

  3. D. Bosq, D. Guégan (1995): “Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system”. Statistic and Probability Letters, 25, 201–212.

    Article  MATH  Google Scholar 

  4. D. S. Broomhead, G. P. King (1986): “Extracting qualitative dynamics from experimental data”, Physica D, 20, 217–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Castagli (1989): “Nonlinear prediction of chaotic time series”, Physica D, 35, 335–356.

    Article  MathSciNet  Google Scholar 

  6. M. Castagli, S. Eubank, J. Farmer. J. Gibson (1991): “ State space reconstruction in the presence of noise”, Physica D. 51, 52–98.

    Article  MathSciNet  Google Scholar 

  7. A. Cenys, K. Pyragas (1988): “Estimation of the number of degrees of freedom from chaotic time series”, Physics Letters A, 129. 227–230.

    Article  Google Scholar 

  8. R. Chen, W. Hardie (1995): “Nonparametric time series analysis: a selective review with examples”, in Proceedings of the 50th ISI Conference in Beijing, IP 10, 375–394.

    Google Scholar 

  9. M. Delecroix, D. Guégan, G. Léorat (1994): “Detecting deterministic chaos from obsevational data. n = B09450. Preprint INSEE. Paris.

    Google Scholar 

  10. M. Delecroix, D. Guégan, G. Léorat (1996): “Detecting deterministic chaos using regressogram. In preparation.

    Google Scholar 

  11. J. P. Eckmann, D. Ruelle (1985): “Ergodic theory of chaos and strange attractors”, Reviews of Modern Physics, 57, 617–656.

    Article  MathSciNet  Google Scholar 

  12. M. A. El Gamal (1987): “Simple estimationn and forecasting methods in systems characterized by deterministic chaos: the univariate case”, Preprint.

    Google Scholar 

  13. H. P. Fang, L. Y. Cao (1995): “Predicting and charaterizing data sequences from structure variable systems”. Preprint.

    Google Scholar 

  14. J. D. Farmer, V. Sidorovich (1988): “Exploiting chaos tro predict the future-and reduce noise”, in Evolution, Learning and Cognition, eds. Lee, World Scientific Press.

    Google Scholar 

  15. B. Finkenstadt, P. Kuhbier (1995): “Forecasting nonlinear economic time series: a simple test to acompany the nearest neighbor method”, Empirical economics, 20, 243–263.

    Article  Google Scholar 

  16. A. M. Fraser, H. L. Swinney (1986): “Indépendant coordinates for strange attractors fron mutual information”, Phys. Review. A.33, 1134–1140.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Geweke (1988): “Inference and forecasting for deterministic nonlinear time series observed with measurement error”, Preprint.

    Google Scholar 

  18. D. Guégan (1994a): “Deterministic versus Stochastic Systems”. Preprint n°9438, INSEE.

    Google Scholar 

  19. D. Guégan (1994b): “Nonparametric estimation in chaotic deterministic system”, to appear in the Proceedings of the International Conference on “Chaos and dynamical systems”, Tokyo, May 1994.

    Google Scholar 

  20. D. Guégan (1994c): “Séries chronologiques non linéaires temps discret. Economica.

    Google Scholar 

  21. D. Guégan (1995): “Invariance in stochastic and Deterministic Systems”, in the Proceedings of the 50th ISI Conference, Beijing, IP 10, 357–373..

    Google Scholar 

  22. D. Guégan (1996): “How can noise be brought out in dynamical system”, in the proceedings of the Multidisciplinary International Conference in Matrafured, Hungary, Sept. 1995.

    Google Scholar 

  23. D. Guégan, G. Léorat (1995a): “Consistent estimates to detect chaos in financial data”, Preprint Paris XIII n = BO 95–07.

    Google Scholar 

  24. D. Guégan, G. Léorat (1995b): “What is the good identification theory for noisy chaos: an empirical approach”, Preprint.

    Google Scholar 

  25. D. Guégan, L. Mercier (1996): “Rising and Falling Predictions in Intra-Day financial data”, in the Proceedings of the International Forecasting Financial Markets Conference organized by the Chemical Bank. London.

    Google Scholar 

  26. J. Jimenez, J. A. Moreno, G. J. Ruggieri (1992): “Forecasting in chaotic time series: a local optimal linear reconstruction method”, Physical review A, 45, 3553–3558.

    Article  Google Scholar 

  27. J. Lasota, O. Mac Key (1987): “Probabilistic properties of deterministic system”. Cambridge Ltd.

    Google Scholar 

  28. B. Lillekjendlie, D. Kugiumtzis, N. Christophersen (1994): “Chaotic time series: system identification and prediction”, Preprint.

    Google Scholar 

  29. T. P. Meyer, N. H. Packard (1991): “ Local forecasting of high dimensional chaotic dynamics”, Preprint.

    Google Scholar 

  30. D. B. Murray (1993): “Forecacting a chaotic time series using an improved metric for embedding space”, Physica D, 68, 318–325.

    Article  MATH  Google Scholar 

  31. D. Ruelle (1989): “Chaotic motion and strange attractors”, Cambridge Univ. Press.

    Book  Google Scholar 

  32. SCMA I (1992), E. D. Feigelson, G. J. Babu, Statistical Challenges in Modern Astronomy, Springer Verlag.

    Google Scholar 

  33. G. C. Spiro (1993): “Measuring dynmical noise in dynamical systems”. Physica D, 65,289–299.

    Article  MathSciNet  Google Scholar 

  34. K. Stokbro, D. K. Umberger (1992): “Forecasting with weighed maps”, in Nonlinear Modeling and Forecasting, Proc. Vol. XII, eds. M. Castagli and S. Eubank, Addison-Weisley.

    Google Scholar 

  35. F. Takens (1981): “Detecting strange attractors in turbulence, in Lecture Notes in Mathematics, Vol. 898. D. A. Rand and L. S. Young, Eds. Springer Verlag, 366.

    Google Scholar 

  36. H. Tong (1991): “Nonlinear Time Series: A Dynamical System Approach”, Oxford science Publications.

    Google Scholar 

References

  1. Bickel, Peter J., and Bühlmann. Peter, (1996), “What is a Linear Process,” preprint, to appear in the Proceedings of the National Academy of Sciences.

    Google Scholar 

  2. New Directions in Time Series Analysis,Part I, eds. D. Brillinger, P. Caines, J. Geweke, E. Parzen, M. Rosenblatt. M. Taqqu, Springer-Verlag: New York.

    Google Scholar 

  3. Casdagli, M., Des Jardins, D., Eubank, S., Farmer, J.D., Gibson, J., Hunter, N. and Theiler, J. (1992) “Nonlinear Modeling of Chaotic Time Series: Theory and Applications” Applied Chaos, ed. Jong Kim. (Addison-Wesley) pp. 335–383.

    Google Scholar 

  4. Preistly, M.B., (1988) Non-Linear and Non- Stationary Time Series Analysis, Academic Press: London.

    Google Scholar 

  5. Subba Rao, T., (1991), “Analysis of Nonlinear Time Series (and Chaos) by Bispectral Methods,” in Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, Proc. Vol. XII, Eds. M. Casdagli and S. Eubank, Addison-Wesley. 1991.

    Google Scholar 

  6. Theiler, J. Linsay, P. S., and Rubin, D. M. (1992): “Detecting Nonlinearity in Data with Long Coherence Times” Proc. of NATO Workshop on Comparative Time Series Analysis, Santa Fe Institute. 14–17 May, 1992.

    Google Scholar 

  7. Tong, H. (1990): Non-Linear Time Series,A Dynamical System Approach, Oxford University Press: Oxford.

    Google Scholar 

  8. Weigend, A., and Gershenfeld, N. (1994). Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley Publishing Co., Reading, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Guégan, D. (1997). Nonparametric Methods for Time Series and Dynamical Systems. In: Babu, G.J., Feigelson, E.D. (eds) Statistical Challenges in Modern Astronomy II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1968-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1968-2_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7360-8

  • Online ISBN: 978-1-4612-1968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics