Skip to main content

Integration in a Probability Space

  • Chapter
Probability Theory

Part of the book series: Springer Texts in Statistics ((STS))

  • 2862 Accesses

Abstract

There are two basic avenues to integration. In the modern approach the integral is introduced first for simple functions—as a weighted average of the values of the function—and then defined for any nonnegative measurable Function f as a limit of the integrals of simple nonnegative functions increasing to f. Conceptually this is extremely simple, but a certain price is paid in terms of proofs. The alternative classical approach, while employing a less intuitive definition, achieves considerable simplicity in proofs of elementary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Y. S. Chow and W. J. Studden, “Monotonicity of the variance under truncation and variations of Jensen’s inequality,”Ann. Math. Stat.40 (1969), 1106–1108.

    Article  MathSciNet  MATH  Google Scholar 

  • K. L. Chung and W. H. J. Fuchs, “On the distribution of values of sums of random variables,”Mem. Amer. Soc.6 (1951).

    Google Scholar 

  • J. L. DoobStochastic ProcessesWiley, New York, 1953.

    MATH  Google Scholar 

  • P. R. HalmosMeasure TheoryVan Nostrand, Princeton, 1950; Springer-Verlag, Berlin and New York, 1974.

    Google Scholar 

  • P. Hall, “On the 2pconvergence of random variables,”Proc. Cambridge Philos. Soc.82 (1977). 439–446.

    Article  MATH  Google Scholar 

  • G. H. Hardy, J. E. Littlewood, and G. PolyaInequalitiesCambridge Univ. Press, London, 1934.

    Google Scholar 

  • S. B. Kochen and C. J. Stone, “A note on the Borel-Cantelli lemma,”Ill. Jour. Math.8 (1964), 248–251.

    MathSciNet  MATH  Google Scholar 

  • A. Liapounov, “ Nouvelle forme du thĂ©oreme sur la limite de probabilitĂ©,”Mem. Acad. Sc. St. Petersbourg12 (1905), No. 5.

    Google Scholar 

  • M. LoèveProbability Theory3rd ed., Van Nostrand, Princeton, 1963; 4th ed., Springer-Verlag, Berlin and New York, 1977–1978.

    Google Scholar 

  • G. Polya, “Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz,”Math. Ann.84 (1921), 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  • S. SaksTheory of the Integral(L. C. Young, translation), Stechert-Hafner, New York, 1937.

    Google Scholar 

  • H. Teicher, “On the law of the iterated logarithm,”Ann. Prob.2 (1974), 714–728.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chow, Y.S., Teicher, H. (1997). Integration in a Probability Space. In: Probability Theory. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1950-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1950-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40607-7

  • Online ISBN: 978-1-4612-1950-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics