Advertisement

Field Algorithm

  • Richard Tolimieri
  • Myoung An
  • Chao Lu
Part of the Signal Processing and Digital Filtering book series (SIGNAL PROCESS)

Abstract

In 1968, C. Rader [7]observed that for a prime number p, the p-point 1-dimensional FT could be computed by a (p— 1) x (p— 1) skew-circulant matrix action. S. Winograd and others greatly extended the range of Rader’s method to include the p R-point 1-dimensional FT and multidimensional generalizations [3].

Keywords

Discrete Fourier Transform Finite Field Irreducible Polynomial Circulant Matrix Multiplicative Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agarwal, R.C. and Cooley, J.W. (1977), “New Algorithms for Digital Convolution,” IEEE Trans. ASSP ASSP-25, 392–410.CrossRefGoogle Scholar
  2. [2]
    An, M. and Tolimieri, R. (1993), “Multiplicative Multidimensional Fourier transform Algorithms,” preprint, Aware, Inc.Google Scholar
  3. [3]
    Auslander, L., Feig, E., and Winograd, S. (1983), “New Algorithms for the Multiplicative Discrete Fourier transform,” IEEE Trans. ASSP ASSP-31(2).Google Scholar
  4. [4]
    Davis, P.J. (1979), Circulant Matrices, John Wiley and Sons, Inc., New York.MATHGoogle Scholar
  5. [5]
    Ireland and Rosen (1980), A Classical Introduction to Modern Number Theory, Springer-Verlag, New York.Google Scholar
  6. [6]
    Nussbaumer, H. and Quandalle, P. (1979), “Fast Computation of Discrete Fourier Transforms Using Polynomial Transforms,” IEEE Trans. ASSP ASSP-27, 169–181, April.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Rader, C. (1968), “Discrete Fourier Transforms when the Number of Data Samples is Prime,” Proc. IEEE 56, 1107–1108.CrossRefGoogle Scholar
  8. [8]
    Tolimieri, R. (1986), “Multiplicative Characters and the Discrete Fourier transform,” Adv. Appl. Math. 7, 344–380.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Tolimieri, R., An, M., Abdelatif, Y., Lu, C, Kechriotis, G. and Anupindi, N (1995), “Group Invariant Fourier Transform Algorithms,” Advances in Imaging and Electron Physics 93, 1–55.CrossRefGoogle Scholar
  10. [10]
    Vulis, M. (1989), “The Weighted Redundancy Transform,” IEEE Trans. ASSP ASSP-37(11).Google Scholar
  11. [11]
    Winograd, S. (1980), “Arithmetic Complexity of Computations,” Presented at CBMS-NSF Regional Conf. Series in Appl. Math.Google Scholar
  12. [12]
    Winograd, S., (1978), “On Computing the Discrete Fourier transform,” Math. Comput. 32, 175–199.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard Tolimieri
    • 1
  • Myoung An
    • 2
  • Chao Lu
    • 3
  1. 1.Department of Electrical EngineeringCity College of CUNYNew YorkUSA
  2. 2.A.J. Devaney AssociatesAllstonUSA
  3. 3.Department of Computer and Information SciencesTowson State UniversityTowsonUSA

Personalised recommendations