Skip to main content

C. elegans as a Model system for Germ Cell Death

  • Chapter

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

Abstract

Programmed cell death plays a vital role in the life of an organism. The developing organism is shaped not only by its cells, but also by the cells it removes through programmed cell death. Programmed cell death also helps regulate homeostasis in a growing number of tissues; the disruption of this pathway can prevent the culling of potentially dangerous cells (facilitating the production of cancer and autoimmune disease) or remove cells that should not die (leading to degenerative diseases and other pathologies) (1). Programmed cell death is particularly abundant in the mammalian germline. For example, over 99.9% of all primary germ cells in women fail to ovulate, instead dying by a process called atresia, which has recently been recognized to be apoptotic (2, 3). Programmed cell deaths also occur in the germlines of other species, both vertebrate and invertebrate (reviewed in 3). The broad conservation of germ cell death suggests that the molecular mechanisms controlling this process may also be similar across evolutionary lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–62.

    Article  PubMed  CAS  Google Scholar 

  2. Baker TG. Radiosensitivity of mammalian oocytes with particular reference to the human female. Am J Obstet Gynecol 1971;110:746–61.

    PubMed  CAS  Google Scholar 

  3. Tilly JL. Apoptosis and ovarian function. Rev Reprod 1996; 1: 162–72.

    Article  PubMed  CAS  Google Scholar 

  4. Horvitz HR, Shaham S, Hengartner MO. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 1994; 59: 377–85.

    Article  PubMed  CAS  Google Scholar 

  5. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode,Caenorhabditis elegans. Dev Biol 1977;56:110–56.

    CAS  Google Scholar 

  6. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 1983;220:1277–9.

    CAS  Google Scholar 

  7. Ellis RE, Jacobson DM, Horvitz HR. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 1991;129:79–94.

    PubMed  CAS  Google Scholar 

  8. Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1–2. Cell 1994;76:665–76.

    Article  PubMed  CAS  Google Scholar 

  9. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. TheC. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641–52.

    Article  PubMed  CAS  Google Scholar 

  10. Luciani M-F, Chimini G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J 1996; 15: 226–35.

    PubMed  CAS  Google Scholar 

  11. Hirsh D, Oppenheim D, Klass M. Development of the reproductive system of Caenorhabditis elegans. Dev Biol 1976; 49: 200–19.

    Article  PubMed  CAS  Google Scholar 

  12. Klass M, Wolf N, Hirsh D. Development of the male reproductive system and sexual transformation in the nematode Caenorhabditis elegans. Dev Biol 1976; 52: 118.

    Article  Google Scholar 

  13. Kimble JE, White JG. On the control of germ cell development inCaenorhabditis elegans. Dev Biol 1981; 81: 208–19.

    Article  PubMed  CAS  Google Scholar 

  14. Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 1979; 70: 396–417.

    Article  PubMed  CAS  Google Scholar 

  15. Wood WB. Introduction to C. elegansbiology. In: Wood WB, ed. The Nematode Caenorhabditis elegans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1988; 1–16.

    Google Scholar 

  16. Waterston R, Sulston J. The genome of Caenorhabditis elegans. Proc Nat ’ Acad Sci USA 1995; 92: 10836–40.

    Article  CAS  Google Scholar 

  17. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77: 71–94.

    PubMed  CAS  Google Scholar 

  18. Kimble J, Ward S. Germ-line development and fertilization. In: Wood WB, ed. The Nematode Caenorhabditis elegans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1988; 191–214.

    Google Scholar 

  19. Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 1985; 5: 3484–96.

    PubMed  CAS  Google Scholar 

  20. Mеllо CC, Kramer JM, Stinchcomb DT, Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 1991; 10: 3959–70.

    Google Scholar 

  21. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817–29.

    Article  PubMed  CAS  Google Scholar 

  22. Hengartner M0, Ellis RE, Horvitz HR. Caenorhabditis elegansgene ced-9protects cells from programmed cell death. Nature 1992; 356: 494–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  24. Hevelone J, Hartman PS. An endonuclease fromCaenorhabditis elegans: partial purification and characterization. Biochem Genet 1988; 26: 447–61.

    Article  PubMed  CAS  Google Scholar 

  25. Ellis RE, Horvitz HR. Two C. elegansgenes control the programmed deaths of specific cells in the pharynx. Development 1991; 112: 591–603.

    PubMed  CAS  Google Scholar 

  26. Kuwabara PE, Kimble J. Molecular genetics of sex determination inC. elegans. Trends in Genetics 1992; 8: 164–8.

    PubMed  CAS  Google Scholar 

  27. Fitch DHA, Bugaj-Gaweda B, Emmons SW. 185 ribosomal RNA gene phylogeny for some Rhabditaerelated toCaenorhabditis. Mol Biol Evolution 1995; 12: 346–58.

    CAS  Google Scholar 

  28. Sternberg PW, Horvitz HR. Gonadal cell lineages of the nematodePanagrellus redivivusand implications for evolution by the modification of cell lineage. Dev Biol 1981; 88: 147–66.

    Article  PubMed  CAS  Google Scholar 

  29. Gems D, Riddle DL. Longevity in Caenorhabditis elegansreduced by mating but not gamete production. Nature 1996; 379: 723–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gumienny, T.L., Hengartner, M.O. (1997). C. elegans as a Model system for Germ Cell Death. In: Tilly, J.L., Strauss, J.F., Tenniswood, M. (eds) Cell Death in Reproductive Physiology. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1944-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1944-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7351-6

  • Online ISBN: 978-1-4612-1944-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics