Skip to main content

Lieb-Thirring Inequalities for the Pauli Operator in Three Dimensions

  • Chapter
Quasiclassical Methods

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 95))

Abstract

Motion of a particle with spin in a magnetic field is described by the Pauli operator, that is by the operator

$$\begin{array}{*{20}{c}} {{\mathbb{P}_0} = {{\left( {\sum \cdot ( - i\nabla - a)} \right)}^2} = {{( - i\nabla - a)}^2}\mathbb{I}{\text{ - }}\sum \cdot {\text{B}},}&{\mathbb{I}{\text{ = }}\left( {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right)} \end{array}$$
(1.1)

acting in L 2(ℝ3) ⊕ L 2(ℝ3). Here a = (α1α2α3) is a vector-potential, B = (B 1, B 2, B 3) = rot a is the magnetic field and Σ is the vector of the 2 x 2 Pauli matrices σ1, σ2, σ3 (see[3]). As seen from (1.1), the operator \( \mathbb{D}_0 \) is non-negative. If one perturbs it by a real-valued function V (electric potential) decreasing at infinity, then the resulting operator may have some negative discrete spectrum. The main goal of the paper is to establish Lieb-Thirring type estimates for the momenta

$$ M_\gamma = \sum\limits_k {\left| {\Lambda _k } \right|} ^\gamma ,\gamma > 0, $$
((1.2))

of the negative eigenvalues Λk of the operator \( \mathbb{P} = \mathbb{P}_0 + V\mathbb{I} \). Analogous question was studied in [16] for the Pauli operator acting on L 2(ℝ2) ⊕ L 2(ℝ2) and the present paper can be regarded as a continuation of [16]. It is well-known that without any magnetic field S γ, satisfies the following estimate 1:

$$ M_\gamma \leqslant C_\gamma \int {V - \left( x \right)^{\gamma + \frac{3} {2}} dx,} $$
((1.3))

which is usually referred to as the Lieb-Thirring inequality if γ > 0 and the Rosenblum-Lieb-Cwickel inequality if γ = 0. Using the diamagnetic inequality (see [1]) one can extend this estimate to the spinless operator (-i∇ - a)2 + V with a ≠ 0 as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Avron, I. Herbst, B. SimonSchrödinger operators with magnetic fields I. General interactions, Duke Math. J. 45 (1978), 847–883.

    MathSciNet  MATH  Google Scholar 

  2. M.S. Birman, M.Z. SolomyakSpectral theory of self-adjoint operators in Hilbert spaceReidel, 1987.

    Google Scholar 

  3. H.L. Cycon, R.G. Fröse, W. Kirsch, B. SimonSchrödinger Operators, Texts and Monographs in Physics, Springer, Berlin Heidelberg, 1987.

    Google Scholar 

  4. N. Dunford, J.T. SchwartzLinear operators IISpectral theory, Interscience Publishers, New York London, 1963.

    MATH  Google Scholar 

  5. D. E. Edmunds, W.D. EvansSpectral theory and differential operatorsClarendon Press, Oxford, 1987.

    MATH  Google Scholar 

  6. BY L. ErdösGround state density of the two-dimensional Pauli operator in the strong magnetic fieldLett. Math. Phys. 29 (1993), 219–240.

    Google Scholar 

  7. BY L. ErdösMagnetic Lieb-Thirring inequalitiesCommun. Math. Phys. 170 (1995), 629–668.

    Article  Google Scholar 

  8. BY L. ErdösMagnetic Lieb-Thirring inequalities and estimates on stochastic oscillatory integrals, Ph.D. Thesis, Princeton University, 1994.

    Google Scholar 

  9. L. HörmanderThe analysis of linear partial differential operators ISpringer, Berlin, 1983.

    Book  Google Scholar 

  10. O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’cevaLinear and Quasilinear Equations of Parabolic TypeTranslations of mathematical monographs, V. 23, AMS, Providence, 1968.

    Google Scholar 

  11. E.H. Lieb, M. loss, J.PH. SolovejStability of matter in magnetic fieldsPhys. Rev. Lett. 75 (1995), 985.

    Article  MathSciNet  MATH  Google Scholar 

  12. E.H. Lieb, J.P. Solovej, J. YngvasonAsymptotics of heavy atoms in high magnetic fields: II. Semiclassical regionsComm. Math. Phys. 161 (1994), 77–124.

    MathSciNet  MATH  Google Scholar 

  13. E.H. Lieb, J.P. Solovej, J. YngvasonGround states of large quantum dots in magnetic fieldsPhys. Rev. B 51 (1995), 10646–10665.

    Google Scholar 

  14. M. Loss, H.-T. YauStability of Coulomb systems with magnetic fields III. Zero energy bound states of the Pauli operatorCommun. Math. Phys. 104 (1986), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Reed, B. SimonMethods of modern mathematical physics IIIAcademic Press, New York, 1978.

    MATH  Google Scholar 

  16. A.V. SobolevOn the Lieb-Thirring estimates for the Pauli operatorDuke Math. J. 82 (1996), 607–635.

    MathSciNet  MATH  Google Scholar 

  17. B Helffer, J. Nourrigat, X.P. WangSur le spectre de l’équation de Dirac (dans2 ou3) avec champ magnétique, Ann. Scient. Ec. Norm. Sup. 22 (1989), 515–533.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sobolev, A.V. (1997). Lieb-Thirring Inequalities for the Pauli Operator in Three Dimensions. In: Rauch, J., Simon, B. (eds) Quasiclassical Methods. The IMA Volumes in Mathematics and its Applications, vol 95. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1940-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1940-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7349-3

  • Online ISBN: 978-1-4612-1940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics