Advertisement

Taming Chaos in the Wild: A Model-free Technique for Wildlife Population Control

  • David Peak

Abstract

In an ideal world, a wildlife manager would have access both to the detailed histories of a well-defined set of interconnected populations and to an accurate deterministic model of the ecological dynamics of those populations. The manager would use the model to generate forecasts for population behavior with different assumptions about climatic conditions and land development and, as a result, would construct sound conservation policies that would ensure the continued robustness of the managed species while simultaneously optimizing human economic interests.

Keywords

Breeding Season Physical Review Letter Deterministic Chaos Chaotic Time Series Stable Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ditto, W.L., S.N. Rauseo, and M.L. Spano. 1990. Experimental control of chaos. Physical Review Letters 65:3211–3214.PubMedCrossRefGoogle Scholar
  2. Ditto, W.L., M.L. Spano, and J.F. Lindner. 1995. Techniques for the control of chaos. Physica D 86:198–211.CrossRefGoogle Scholar
  3. Garfinkel, A., M.L. Spano, W.L. Ditto, and J.N. Weiss. 1992. Controlling cardiac chaos. Science 257:1230–1235.PubMedCrossRefGoogle Scholar
  4. Gills, Z., C. Iwata, R. Roy, I.B. Schwartz, and I. Triandaf. 1992. Tracking unstable steady states: extending the stability regime of a multimode laser system. Physical Review Letters 69:3169–3172.PubMedCrossRefGoogle Scholar
  5. Hunt, E.R. 1991. Stabilizing high-period orbits in a chaotic system: the diode resonator. Physical Review Letters 67:1953–1955.PubMedCrossRefGoogle Scholar
  6. Li, T., and J.A. Yorke. 1975. Period three implies chaos. American Mathematics Monthly 82:985–992.CrossRefGoogle Scholar
  7. Logan, J.A., and J.C. Allen. 1992. Nonlinear dynamics and chaos in insect populations. Annual Review of Entomology 37:455–477.CrossRefGoogle Scholar
  8. May, R.M., and G.F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models. American Naturalist 110:573–599.CrossRefGoogle Scholar
  9. McCullough, D.R. 1979. The George Reserve deer herd. University of Michigan Press, Ann Arbor, Michigan, USA.Google Scholar
  10. Moran, P.A.P. 1950. Some remarks on animal population dynamics. Biometrics 6:250–258.PubMedCrossRefGoogle Scholar
  11. Novak, M., M. Obbard, J.G. Jones, R. Newman, A. Booth, A.J. Satterthwaite, and G. Linscombe. 1987. Furbearer harvests in North America, 1600–1984. Ontario Trappers Association, Toronto, Ontario, Canada.Google Scholar
  12. Ott, E., C. Grebogi, and J.A. Yorke. 1990. Controlling chaos. Physical Review Letters 64:1196–1199.PubMedCrossRefGoogle Scholar
  13. Ott, E., T. Sauer, and J.A. Yorke, editors. 1994. Coping with chaos. John Wiley and Sons, New York, New York, USA.Google Scholar
  14. Petrov, V., V. Gaspar, J. Massere, and K. Showalter. 1993. Controlling chaos in the Belousov-Zhabotinsky reaction. Nature 361:240–243.CrossRefGoogle Scholar
  15. Peak, D., and M. Frame. 1994. Chaos under control: the art and science of complexity. W.H. Freeman, New York, New York, USA.Google Scholar
  16. Power, M., and A.G. Power. 1995. A modeling framework for analyzing anthropogenic stresses on brook trout(Salvenius fontinalis)populations. Ecological Modeling 80:171–185.CrossRefGoogle Scholar
  17. Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11:559–623.CrossRefGoogle Scholar
  18. Schiff, S.J., K. Jerger, D.H. Duong, T. Chang, M.L. Spano, and W.L. Ditto. 1994. Controlling chaos in the brain. Nature 370:615–620.PubMedCrossRefGoogle Scholar
  19. Singer, J., Y.-Z. Wang, and H.H. Bau. 1991. Controlling a chaotic system. Physical Review Letters 66:1123–1125.PubMedCrossRefGoogle Scholar
  20. Starrett, J., and R. Tagg. 1995. Control of a chaotic parametrically driven pendulum. Physical Review Letters 74:1974–1977.PubMedCrossRefGoogle Scholar
  21. Takens, F. 1981. Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898:366–381.CrossRefGoogle Scholar
  22. Witkowski, F.X., K.M. Kavanaugh, P.A. Penloske, R. Plonsey, M.L. Spano, W.L. Ditto, and D.T. Kaplan. 1995. Evidence for determinism in ventricular fibrillation. Physical Review Letters 75:1230–1233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • David Peak

There are no affiliations available

Personalised recommendations