The Isolated Organ in Research

  • T. YehJr.
  • A. S. Wechsler


Technological advances in artificial perfusion allow effective isolated perfusion of a wide variety of organs and tissues, including, but not limited to, brain, heart, lung, heart-lung, liver, kidney, spleen, pancreas, thymus, gastrointestinal tract, urinary tract, reproductive tract, skeletal muscle, nerves, and blood vessels. The option of extended pharmacological or surgical treatment of animals before organ isolation makes this technique extremely powerful. To the uninitiated, isolated organ perfusion may conjure up images of Frankensteinian surgery, machinery, and complexity; however, surgeons are particularly well equipped to implement these models, which actually are much simpler today than they were historically.


Roller Pump Portal Venous Pressure Bubble Oxygenator Balloon Volume Aortic Cannula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doring HJ, Dehnert H. The isolated perfused warm-blooded heart according to Langendorff. In: Methods in Experimental Physiology and Phar-macology, vol 5. Biological Measurement Techniques. West Germany: Biomesstechnik-Verlag, 1985, pp. 89–90Google Scholar
  2. 2.
    Ross BD. Perfusion Techniques in Biochemistry. A Laboratory Manual in the Use of Isolated Perfused Organs in Biochemical Experimentation. Oxford: Clarendon, 1972, p. 6Google Scholar
  3. 3.
    Cohen JJ. Apoptosis. Immunol Today 1993; 14:126–130PubMedCrossRefGoogle Scholar
  4. 4.
    Ueda N, Shah SV. Apoptosis. J Lab Clin Med 1994;124:169–177PubMedGoogle Scholar
  5. 5.
    Ritchie HD, Hardcastle JD. Isolated Organ Perfusion. Baltimore: University Park, 1973, p. 9Google Scholar
  6. 6.
    Baggiolini M, Dewald B. Stoffwechsel von Pharmaka in der isoliert perfundierten Rattenleber. In: Staib W, Scholz R, eds. Untersuchungen iiber dad Methylhydrazinderivat Ibenzmethyzin. Stoffwechsel der isoliert perfundierten Leber. Berlin: Springer-Verlag, 1968, p. 200CrossRefGoogle Scholar
  7. 7.
    Doring HJ. Reversible and irreversible forms of contractile failure caused by disturbances of general anesthetics in myocardial ATP utilization. In: Fleckenstein A, Dhalla NS, eds. Recent Advances in Studies on Cardiac Structure and Metabolism. Basic Functions of Cations in Myocardial Activity. Baltimore: University Park, 1975, pp. 395–403Google Scholar
  8. 8.
    Andrews WHH, Hecker R, Maegraith BG, Ritchie HD. The action of adrenaline, 1-noradrenaline, acetyl choline, and other substances on the blood vessels of the perfused canine liver. J Physiol (Lond) 1955;128:413–434PubMedGoogle Scholar
  9. 9.
    Langendorff O. Untersuchungen am iiberlebenden saugetierherzen. Arch f d ges Physiol 1895;61:291–332CrossRefGoogle Scholar
  10. 10.
    Kammermeier H, Rudroff W. Funktion und energiestoffwechsel des isolierten herzens bei variation von pH, pCO2 und HCO3. Pflugers Arch 1972; 334:439–449Google Scholar
  11. 11.
    Bleehen NM, Fisher RB. The action of insulin in the isolated rat heart. J Physiol (Lond) 1954;123: 260–276Google Scholar
  12. 12.
    Fallen EL, Elliott WC, Gorlin R. Apparatus for study of ventricular function and metabolism in the isolated perfused rat heart. J Appl Physiol 1967; 22:836–839PubMedGoogle Scholar
  13. 13.
    Taylor IM, Hufflnes WD, Young DT. Tissue water and electrolytes in an isolated perfused rat’s heart preparation. J Appl Physiol 1961;16:95–102PubMedGoogle Scholar
  14. 14.
    Cole CW, Bormanis J. Ancrod: a practical alternative to heparin. J Vase Surg 1988;8:59–63Google Scholar
  15. 15.
    Miller JH, McDonald RK. The effect of hemoglobin on renal function in the human. J Clin Invest 1951;30:1033–1040PubMedCrossRefGoogle Scholar
  16. 16.
    Lee WH Jr., Krumhaar D, Fonkalsrud EW, Schjeide OA, Maloney JV Jr. Denaturation of plasma proteins as a cause of morbidity and death after intracardiac operations. Surgery 1961;50: 29–39PubMedGoogle Scholar
  17. 17.
    Miller JA, Fonkalsrud EW, Latta HL, Maloney JV Jr. Fat embolism associated with extracorporeal circulation and blood transfusion. Surgery 1962;51: 448–451Google Scholar
  18. 18.
    Long DM Jr, Folkman MJ, McClenathan JE. The use of low molecular weight dextran in extracorporeal circulation, hypothermia, and hypercapnia. J Cardiovasc Surg 1963;4:617–641Google Scholar
  19. 19.
    Rand PW, Lacombe E, Barker N, Derman U. Effects of open-heart surgery on blood viscosity. J Thorac Cardiovasc Surg 1966;51:616–625PubMedGoogle Scholar
  20. 20.
    Cahill JJ, Kolff WJ. Hemolysis caused by pumps in extracorporeal circulation (in vitro evaluation of pumps). J Appl Physiol 1959;14:1039–1044PubMedGoogle Scholar
  21. 21.
    Ferbers EW, Kirklin JW. Studies of hemolysis with a plastic-sheet bubble oxygenator. J Thorac Surg 1958;36:23–32PubMedGoogle Scholar
  22. 22.
    Indeglia RA, Shea MA, Varco RL, Bernstein EF Mechanical and biologic considerations in erythrocyte damage. Surgery 1967;62:47–55Google Scholar
  23. 23.
    Paton BC, Grover FL, Herson MW, Bess H, Moore AR. The use of a nonionic detergent added to organ perfusates. In: Norman JC, Folkman J, Hardison WG, Rudolf LE, Veith FJ, eds. Organ Perfusion and Preservation. New York: AppletonCentury-Crofts, 1968, pp. 105–120Google Scholar
  24. 24.
    Brodie TG. The perfusion of surviving organs. J Physiol (Lond) 1903;29:266–275Google Scholar
  25. 25.
    Hooker DR. A study of the isolated kidney: the influence of pulse pressure upon renal function. Am J Physiol 1910;27:24–45Google Scholar
  26. 26.
    McMaster PD, Parsons RJ. The effect of the pulse on the spread of substances through tissues. J Exp Med 1938;68:377–399PubMedCrossRefGoogle Scholar
  27. 27.
    Giron F, Birtwell WC, Soroff HS, Deterling RA. Hemodynamic effects of pulsatile and non-pulsatile flow. Arch Surg 1966;93:802–810PubMedCrossRefGoogle Scholar
  28. 28.
    Trinkle JK, Helton NE, Bryant LR, Word RC. Metabolic comparison of pulsatile and mean flow for cardiopulmonary bypass. Circulation 1968; 38(suppl. 6):vi–196Google Scholar
  29. 29.
    Trinkle JK, Helton NE, Bryant LR, Griffen WO. Pulsatile cardiopulmonary bypass: clinical evaluation. Surgery 1971;68:1074–1078Google Scholar
  30. 30.
    Shepard RB, Kirklin JW. Relation of pulsatile flow to oxygen consumption and other variables during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1969;58:694–702PubMedGoogle Scholar
  31. 31.
    Bacaner MB, Lioy F, Visscher MB. Induced change in heart metabolism as a primary determinant of heart performance. Am J Physiol 1965; 209:519–531PubMedGoogle Scholar
  32. 32.
    Brink AJ, Lochner A. Work performance of the isolated perfused beating heart in the hereditary myocardiopathy of the Syrian hamster. Circ Res 1967;21:391–401PubMedCrossRefGoogle Scholar
  33. 33.
    Rebeyka IM, personal communication, 1988Google Scholar
  34. 34.
    Lee WH Jr., Krumhaar D, Derry G, Sachs D, Lawrence SH, Clowes GHA Jr., Maloney JV Jr. Comparison of the effects of membrane and nonmembrane oxygenators on the biochemical and biophysical characteristics of blood. Surg Forum 1961;12:200–202PubMedGoogle Scholar
  35. 35.
    Lorell BH, Isoyama S, Grice WN, Weinberg EO, Apstein CS. Effects of ouabain and isoproterenol on left ventricular diastolic function during lowflow ischemia in isolated, blood-perfused rabbit hearts. Circ Res 1988;63:457–467PubMedCrossRefGoogle Scholar
  36. 36.
    Heymans JR, Kochmann M. Une nouvelle méthode de circulation artificielle à travers le coeur isolé de mammifere. Arch Int Pharmacodyn Ther 1904; 13:27–36Google Scholar
  37. 37.
    Osher WJ. Pressure-flow relationship of the coronary system. Am J Physiol 1953;172:403–416PubMedGoogle Scholar
  38. 38.
    Mendler N, Hagl S, Sebening F, Theobald KP. Metabolite des energiestoffwechsels im parabiotisch perfundierten rattenherzen während und nach kardioplegie durch ischämie, kaliumchlorid und kalium-magnesium-aspartat. Arzneimittel-forschgung 1972;22:909–912Google Scholar
  39. 39.
    Weiss M, Zehl U, Förster W. Koronare autoregulation des isolierten kaninchenherzens. Acta Biol Med Germ 1978;37:291–299PubMedGoogle Scholar
  40. 40.
    Little K, Parkhouse J. Tissue reactions to polymers. Lancet 1962;2:857–861PubMedCrossRefGoogle Scholar
  41. 41.
    Guess WL, Stetson JB. Tissue reactions to organotin-stabilized polyviny1 chloride catheters. JAMA 1968;204:580–584PubMedCrossRefGoogle Scholar
  42. 42.
    Duke HN, Vane JR. An adverse effect of polyviny lchloride tubing used in extracorporeal circulation. Lancet 1968;2:21–23PubMedCrossRefGoogle Scholar
  43. 43.
    Fisk RL, Brownlee RT, Brown DR, McFarlane DF, Budney D, Dritsas KG, Kowalewski K, Couves CM. Perfusion of isolated organs for prolonged functional preservation. In: Norman JC, Folkman J, Hardison WG, Rudolf LE, Veith FJ, eds. Organ Perfusion and Preservation. New York: Appleton-Century-Crofts, 1968, pp. 217–227Google Scholar
  44. 44.
    David Hearse, personal communication, 1986Google Scholar
  45. 45.
    Ferrans VJ, Buja LM, Levitsky S, Roberts WC. Effects of hyperosmotic perfusate on ultrastructure and function of the isolated canine heart. Lab Invest 1971;24:265–272PubMedGoogle Scholar
  46. 46.
    Weisfeldt ML, Shock NW. Effect of perfusion pressure on coronary flow and oxygen usage of nonworking heart. Am J Physiol 1970;218:95–101PubMedGoogle Scholar
  47. 47.
    Fisher RB, Williamson JR. The oxygen uptake of the perfused rat heart. J Physiol (Lond) 1961; 158:86–101PubMedGoogle Scholar
  48. 48.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373–376PubMedCrossRefGoogle Scholar
  49. 49.
    Gottlieb R, Magnus R. Digitalis und herzarbeit. Nach versuchen am iiberlebenden warmbluterherzen. Arch Exper Pathol Pharmakol 1904;51: 30–63CrossRefGoogle Scholar
  50. 50.
    Coulson RL, Rusy BE. A system for assessing mechanical performance, heat production, and oxygen utilization of isolated perfused whole hearts. Cardiovasc Res 1973;7:859–869PubMedCrossRefGoogle Scholar
  51. 51.
    Sagawa K, Maughan L, Suga H, Sunagawa K.Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University, 1988, pp. 428–444Google Scholar
  52. 52.
    Mautner H, Pick EP. Ueber die durch schockgifte erzeugten zirkulations-storungen. Munchener Medizinische Wochenschrift 1915;62:1141–1143Google Scholar
  53. 53.
    Bauer W, Dale HH, Poulsson LT, Richards DW. The control of circulation through the liver. J Physiol (Lond) 1932;74:343–375Google Scholar
  54. 54.
    Trowell OA. Urea formation in the isolated perfused liver of the rat. J Physiol (Lond) 1942;100: 432–458Google Scholar
  55. 55.
    Brauer RW, Pessotti RL, Pizzolato P. Isolated rat liver preparation. Bile production and other basic properties. Proc Soc Exp Biol Med 1951, 78: 174–181PubMedGoogle Scholar
  56. 56.
    Andrews WHH. A technique for perfusion of the canine liver. Ann Trop Med 1953;47:146–155Google Scholar
  57. 57.
    Greenway CV, Stark RD. The hepatic vascular bed. Physiol Rev 1971;51:23–65PubMedGoogle Scholar
  58. 58.
    Arey LB. Throttling veins in the livers of certain mammals. Anat Rec 1941;81:21–33CrossRefGoogle Scholar
  59. 59.
    Eiseman B, Knipe P, Koh Y, Normell L, Spencer FC. Factors affecting hepatic vascular resistance in the perfused liver. Ann Surg 1963;157:532–547PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • T. YehJr.
  • A. S. Wechsler

There are no affiliations available

Personalised recommendations