This note explores the connections and differences between three commonly used methods for constructing minimax lower bounds in nonparametric estimation problems: Le Cam’s, Assouad’s and Fano’s. Two connections are established between Le Cam’s and Assouad’s and between Assouad’s and Fano’s. The three methods are then compared in the context of two estimation problems for a smooth class of densities on [0,1]. The two estimation problems are for the integrated squared first derivatives and for the density function itself.


Convex Hull Optimal Rate Minimax Rate Smooth Class Fano Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assouad, P. (1983), ‘Deux remarques sur l’estimation’, Comptes Rendus de l’Academie des Sciences, Paris, Ser. I Math 296 1021–1024.MathSciNetMATHGoogle Scholar
  2. Bickel, P. J. & Ritov, Y. (1988), ‘Estimating integrated squared density derivatives: sharp best order of convergence estimates’, Sankhyd: The Indian Journal of Statistics, Series A 50 381–393.MathSciNetMATHGoogle Scholar
  3. Birgé, L. (1986), ‘On estimating a density using Hellinger distance and some other strange facts’, Probability Theory and Related Fields 71271–291.MathSciNetMATHCrossRefGoogle Scholar
  4. Birgé, L. & Massart, P. (1992), Estimation of integral functionals of a density, Technical Report 024–92, Mathematical Sciences Research Institute, Berkeley.Google Scholar
  5. Bretagnolle, J. & Huber, C. (1979), ‘Estimation des densites: risque minimax’, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 47 119–137.MathSciNetMATHCrossRefGoogle Scholar
  6. Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, Wiley, New York.MATHCrossRefGoogle Scholar
  7. Devroye, L. (1987), A Course in Density Estimation, Birkhäuser, Boston.MATHGoogle Scholar
  8. Donoho, D. L. & Liu, R. C. (1991), ‘Geometrizing rates of convergence, II’, Annalsof Statistics 19 633–667.MathSciNetMATHCrossRefGoogle Scholar
  9. Donoho, D. L. & Nussbaum, M. (1990), ‘Minimax quadratic estimation of a quadratic functional’, Journal of Complexity 6 290–323.MathSciNetMATHCrossRefGoogle Scholar
  10. Fan, J. (1991), ‘On the estimation of quadratic functionals’, Annals of Statistics 19 1273–1294.MathSciNetMATHCrossRefGoogle Scholar
  11. Gilbert, E. N. (1952), ‘A comparison of signaling alphabets’, Bell System Technical Journal 31 504–522.Google Scholar
  12. Han, T. S. & Verdú, S. (1994), ‘Generalizing the Fano inequality’, IEEE Transactions on Information Theory 40 1247–1251.MATHCrossRefGoogle Scholar
  13. Has’minskii, R. & Ibragimov, I. (1978), On the non-parametric estimation of functionals, in P. Mandl & M. Husková, eds, ‘Prague Symposium on Asymptotic Statistics’, North Holland, Amsterdam, pp. 41–52.Google Scholar
  14. Ibragimov, I. A. & Has’minskii, R. Z. (1981), Statistical Estimation: Asymptotic Theory, Springer-Verlag, New York.MATHGoogle Scholar
  15. Le Cam, L. (1973), ‘Convergence of estimates under dimensionality restrictions’, Annals of Statistics 1, 38–53.MathSciNetMATHCrossRefGoogle Scholar
  16. Le Cam, L. (1986), Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  17. Pollard, D. (1993), Hypercubes and minimax rates of convergence, Technical report, Yale University.Google Scholar
  18. Stone, C. (1984), ‘An asymptotically optimal window selection rule for kernel density estimates’, Annals of Statistics 12,1285–1297.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Bin Yu
    • 1
  1. 1.University of California at BerkeleyUSA

Personalised recommendations