Advertisement

Counting Processes and Dynamic Modelling

  • Odd O. Aalen

Abstract

I give some historical comments concerning the introduction of counting process theory into survival analysis. The concept of dynamic modelling of counting processes is discussed, focussing on the advantage of models that are not of proportional hazards type. The connection with a statistical definition of causality is pointed out. Finally, the concept of martingale residual processes is discussed briefly.

Keywords

Markov Chain Model Counting Process Intensity Process Event History Analysis Marker Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalen, O. O. (1976), ‘Nonparametric inference in connection with multiple decrement models’, Scandinavian Journal of Statistics 3 15–27.MathSciNetMATHGoogle Scholar
  2. Aalen, O.O. (1987), ‘Dynamic modelling and causality’, Scandinavian Actuarial Journal pp. 177–190.Google Scholar
  3. Aalen, O.O. (1988), ‘Heterogeneity in survival analysis’, Statistics in Medicine 7 1121–1137.CrossRefGoogle Scholar
  4. Aalen, O. O. (1989), ‘A linear regression model for the analysis of life times’, Statistics in Medicine 8 907–925.CrossRefGoogle Scholar
  5. Aalen, O. O. (1993), ‘Further results on the non-parametric linear regression model in survival analysis’, Statistics in Medicine 12 1569–1588.CrossRefGoogle Scholar
  6. Aalen, O. O. & Johansen, S. (1978), ‘An empirical transition matrix for nonhomogeneous Markov chains based on censored observations’, Scandinavian Journal of Statistics 5 141–150.MathSciNetMATHGoogle Scholar
  7. Aalen, O. O., Borgan, O., Keiding, N. & Thormann, J. (1980), ‘Interaction between life-history events: nonparametric analysis of prospective and retrospective data in the presence of censoring’, Scandinavian Journal of Statistics 7 161–171.MathSciNetMATHGoogle Scholar
  8. Andersen, P. K. & Gill, R. D. (1982), ‘Cox’s regression model for counting processes: A large sample study’, Annals of Statistics 10, 1100–1120.MathSciNetMATHCrossRefGoogle Scholar
  9. Andersen, P. K., Borgan, O., Gill, R. D. & Keiding, N. (1993), Statistical Models Based on Counting Processes, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  10. Arjas, E. (1988), ‘A graphical method for assessing goodness of fit in Cox’s proportional hazards model’, Journal of the American Statistical Association 83 204–212.CrossRefGoogle Scholar
  11. Arjas, E. & Eerola, M. (1993), ‘On predictive causality in longitudinal studies’, Journal of Statistical Planning and Inference 34 361–386.MathSciNetMATHCrossRefGoogle Scholar
  12. Boel, R., Varaiya, P. & Wong, E. (1975a), ‘Martingales on jump processes I:Representation results’, SIAM Journal of Control 13 999–1021.MathSciNetMATHCrossRefGoogle Scholar
  13. Boel, R., Varaiya, P. & Wong, E. (1975b), ‘Martingales on jump processes II:Applications’, SIAM Journal of Control 13 1022–1061.MathSciNetMATHCrossRefGoogle Scholar
  14. Brémaud, P. (1972), A martingale approach to point processes, PhD thesis, Electrical Research Laboratory, University of California, Berkeley.Google Scholar
  15. Bretagnolle, J. Si Huber-Carol, C. (1988), ‘Effects of omitting covariates in Cox’s model for survival data’, Scandinavian Journal of Statistics 15 125–138.MathSciNetMATHGoogle Scholar
  16. Dolivo, F. (1974), Counting processes and integrated conditional rates: a martingale approach with application to detection, PhD thesis, University of Michigan.Google Scholar
  17. Fleming, T. R. & Harrington, D. P. (1991), Counting Processes and Survival Analysis, Wiley, New York.MATHGoogle Scholar
  18. Hougaard, P. (1986), ‘Survival models for heterogeneous populations derived from stable distributions’, Biometrika 73 387–396.MathSciNetMATHCrossRefGoogle Scholar
  19. Jewell, N. P. & Kalbfleisch, J. D. (1992), Marker models in survival analysis and applications to issues associated with AIDS, in N. Jewell, K. Dietz & V. Farewell, eds, ‘AIDS Epidemiology: Methodological Issues’, Birkhäuser, Boston.Google Scholar
  20. Manton, K. G. & Stallard, E. (1988), Chronic Disease Modelling, Griffin & Company, New York.Google Scholar
  21. McLeish, D. L. (1974), ‘Dependent central limit theorems and invariance principles’, Annals of Probability 2 620–628.MathSciNetMATHCrossRefGoogle Scholar
  22. Myers, L. E. (1981), ‘Survival functions induced by stochastic covariate processes’, Journal of Applied Probability 18 523–529.MathSciNetMATHCrossRefGoogle Scholar
  23. Mykland, P. (1986), Statistical causality, Technical report, Department of Mathematics, University of Bergen, Norway.Google Scholar
  24. Schweder, T. (1970), ‘Composable Markov processes’, Journal of Applied Probability 7 400–410.MathSciNetMATHCrossRefGoogle Scholar
  25. Self, S. & Pawitan, Y. (1992), Modeling a marker of disease progression and onset of disease, in N. Jewell, K. Dietz & V. Farewell, eds, ‘AIDS Epidemiology: Methodological Issues’, Birkhäuser, Boston.Google Scholar
  26. Struthers, C. A. & Kalbfleisch, J. D. (1986), ‘Misspecified proportional hazard models’, Biometrika 73 363–369.MathSciNetMATHCrossRefGoogle Scholar
  27. Tsiatis, A. A., Dafni, U., DeGruttola, V., Propert, K. J., Strawderman, R. L. & Wulfson, M. (1992), The relationship of CD4 counts over time to survival in patients with AIDS: Is CD4 a good surrogate marker?, in N. Jewell, K. Dietz & V. Farewell, eds, ‘AIDS Epidemiology: Methodological Issues’, Birkhäuser, Boston.Google Scholar
  28. Woodbury, M. A. & Manton, K. G. (1977), ‘A random walk model of human mortality and aging’, Theoretical Population Biology 11 37–48.MathSciNetCrossRefGoogle Scholar
  29. Woodbury, M. A. & Manton, K. G. (1983), ‘A theoretical model of the physiological dynamics of circulatory disease in human populations’, Human Biology 55 417–441.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Odd O. Aalen
    • 1
  1. 1.University of OsloOsloNorway

Personalised recommendations