Advertisement

Nonperturbative Approaches to Atomic and Molecular Multiphoton (Half-Collision) Processes in Intense Laser Fields

  • Shih-I Chu
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 89)

Abstract

In this article, we describe some recent development of generalized Flo- quet formalisms and computational methods for nonperturbative treatments of atomic and molecular multiphoton (half-collision) processes in intense and superintense laser fields. We start with a brief review of the conventional Floquet matrix techniques, applicable to multiphoton bound-bound transitions in finite-level systems in periodic fields, and their limitations. Several generalized Floquet formalisms, beyond the Floquet theorem, are then introduced for the treatment of more complicated systems, such as the many-mode Floquet theory for multi-frequency laser excitation with non-periodic Hamil- tonians, the non-Hermitian Floquet formalism for bound-free and free- free multiphoton ionization and dissociation etc. Finally we describe several recent case studies of strong- field processes using the generalized Floquet techniques: intensity-dependent ionization potential and threshold shift, a.c. Stark shifts of Rydberg states in strong fields, above- threshold multiphoton detachment of H~ in one-color, two-color, and pulsed laser fields, stabilization and ionization suppression of negative ions in superintense high-frequency laser fields, and laser- induced chemical bond softening and hardening and molecular stabilization, etc.

Keywords

Laser Field Schrodinger Equation Threshold Shift Stark Shift MULTIPHOTON Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For recent reviews of strong-field researches, see, for example, Atoms in Intense Laser Fields, Adv. At. Mol. Opt. Phys. Sup. 1, edited by M. Gavrila (Academic Press 1992).Google Scholar
  2. [2]
    See, for example, P.K. Aravind and J.O. Hirschfelder, J. Phys. Chem. 88 (1984) 4788.CrossRefGoogle Scholar
  3. [3]
    J.H. Shirley, Phys. Rev. 138 (1965) B979.CrossRefGoogle Scholar
  4. [4]
    G. Floquet, Ann. l’Ecol. Norm Sup. 12 (1883) 47; J. H. Poincar, Les Méthodes Nouvelles de la Mechanique Celeste, Vols. I, II, IV, (Paris, 1892, 1893, 1899).Google Scholar
  5. [5]
    For review of Floquet methods for two-level systems, see, D.R. Dion and J.O. Hirschfelder, Adv. Chem. Phys. 35 (1976) 265.CrossRefGoogle Scholar
  6. [6]
    For reviews on generalized Floquet formalisms and methods, see, (a) S.I. Chu, Adv. At. Mol. Phys. 21 (1985) 197; (b) S.I. Chu, Adv. Chem. Phys. 73 (1989) 739; (c) S.I. Chu, Phys. Rep. (1996).CrossRefGoogle Scholar
  7. [7]
    S.H. Autler and C.H. Townes, Phys. Rev. 100 (1955) 703.CrossRefGoogle Scholar
  8. [8]
    Numerous methods for numerical solution of periodically time-dependent Schrödinger equations have been developed. See ref. 6(a) for a review. See, also, W.J. Meath, R.A. Thuraisingham, and M.A. Kmetic, Adv. Chem. Phys. 73 (1989) 307; P.P. Friedmann, Adv. Chem. Phys. 73 (1989) 197; R.E. Wyatt, Adv. Chem. Phys. 73 (1989) 231.CrossRefGoogle Scholar
  9. [9]
    S.I. Chu, J.V. Tietz, and K.K. Datta, J. Chem. Phys. 77 (1982) 2968.CrossRefGoogle Scholar
  10. [10]
    (a) S.I. Chu and W.P. Reinhardt, Phys. Rev. Lett. 39 (1977) 1195; (b) S.I. Chu, Chem. Phys. Lett. 54 (1978) 367; (c) A. Maquet, S.I. Chu, and W.P. Reinhardt, Phys. Rev. A27 (1983) 2946.CrossRefGoogle Scholar
  11. [11]
    S.I. Chu and J. Cooper, Phys. Rev. A 32 (1985) 2769.CrossRefGoogle Scholar
  12. [12]
    S.I. Chu, J. Chem. Phys. 75 (1981) 2215.CrossRefGoogle Scholar
  13. [13]
    T.S. Ho, S.I. Chu and J.V. Tietz, Chem. Phys. Lett. 96 (1983) 464; T.S. Ho and S.I. Chu, J. Phys. B 17 (1984) 2101; T.S. Ho and S.I. Chu, Phys. Rev. A 31 (1985) 659; T.S. Ho and S.I. Chu, Phys. Rev. A 32 (1985) 377; K. Wang, T.S. Ho, and S.I. Chu, J. Phys. B 18 (1985) 4539.CrossRefGoogle Scholar
  14. [14]
    J.V. Tietz and S.I. Chu, Chem. Phys. Lett. 101 (1983) 446; K. Wang and S.I. Chu, Phys. Rev. A 39 (1989) 1800.CrossRefGoogle Scholar
  15. [15]
    T.S. Ho and S.I. Chu, Chem. Phys. Lett. 122 (1985) 327; T.S. Ho, K. Wang, and S.I. Chu, Phys. Rev. A 33 (1986) 1798; K. Wang and S.I. Chu, J. Chem. Phys. 86 (1987) 3225.CrossRefGoogle Scholar
  16. [16]
    Several stationary approaches using generalized Floquet formalisms for (arbitrarily) time-dependent Hamiltonian systems have been developed. See, for example, (a) Nonadiabatic coupled dressed-states formalism: T.S. Ho and S.I. Chu, Chem. Phys. Lett. 141 (1987) 315; (b) Two-mode Floquet treatment of multiphoton excitation by (arbitrarily shaped) laser pulses: Y. Huang and S.I. Chu, Chem. Phys. Lett. 225 (1994) 46.CrossRefGoogle Scholar
  17. [17]
    E. Balslev and J.M. Combes, Commun. Math. Phys. 22 (1971) 280; J. Aguilar and J.M. Combes, Commun. Math. Phys. 22 (1971) 265; B. Simon, Ann. Math. 97 (1973) 247.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    See, for example, H.A. Yamani and W.P. Reinhardt, Phys. Rev. All (1975) 1144.Google Scholar
  19. [19]
    G. Yao and S.I. Chu, Chem. Phys. Lett. 204 (1993) 381.CrossRefGoogle Scholar
  20. [20]
    J. Wang, S.I. Chu, and C. Laughlin, Phys. Rev. A 50 (1994) 3208.CrossRefGoogle Scholar
  21. [21]
    C.C. Marston and G.G. Balint-Kurti, J. Chem. Phys. 91 (1989) 3571.MathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Layton and S.I. Chu, Chem. Phys. Lett. 186 (1991) 100.CrossRefGoogle Scholar
  23. [23]
    S.I. Chu, Chem. Phys. Lett. 167 (1990) 155.CrossRefGoogle Scholar
  24. [24]
    R.M. Potvliege and R. Shakeshaft, Adv. At. Mol. Opt. Phys. Sup. 1 (1992) 373.Google Scholar
  25. [25]
    S.I. Chu, K. Wang and E.J. Layton, J. Opt. Soc. Am. B 7 (1990) 425.CrossRefGoogle Scholar
  26. [26]
    S.I. Chu, J. Chem. Phys. 94 (1991) 7901.CrossRefGoogle Scholar
  27. [27]
    D. Telnov and S.I. Chu, Phys. Rev. A 50 (1994) 4099.CrossRefGoogle Scholar
  28. [28]
    D. Telnov, J. Wang, and S.I., Chu, Phys. Rev. A 51 (1995) 4797.CrossRefGoogle Scholar
  29. [29]
    D. Telnov and S.I. Chu, J. Phys. B 28 (1995) 2407.Google Scholar
  30. [30]
    For a recent review on stabilization of atoms in superintense laser fields, see, M. Gavrila, Adv. At. Mol. Phys. Sup. 1 (1992) 435.Google Scholar
  31. [31]
    G. Yao and S.I. Chu, Phys. Rev. A 45 (1992) 6735.CrossRefGoogle Scholar
  32. [32]
    (a) G. Yao and S.I. Chu, Chem. Phys. Lett. 192 (1992) 413; (b) G. Yao and S.I. Chu, Phys. Rev. A 48 (1993) 485.CrossRefGoogle Scholar
  33. [33]
    J. Wang and S.I. Chu, Chem. Phys. Lett. 227 (1994) 663.CrossRefGoogle Scholar
  34. [34]
    D. Telnov, J. Wang and S.I. Chu, Phys. Rev. A 51 (1995) 4797.CrossRefGoogle Scholar
  35. [35]
    S.I. Chu, Z.C. Wu, and E. Layton, Chem. Phys. Lett. 157 (1989) 151; E. Layton, Y. Huang, and S.I. Chu, Phys. Rev. A 41 (1990) 42.MathSciNetCrossRefGoogle Scholar
  36. [36]
    T.S. Ho, S.I. Chu, and C. Laughlin, J. Chem. Phys. 81 (1984) 788; T.S. Ho, C. Laughlin, and S.I. Chu, Phys. Rev. A 32 (1985) 122.Google Scholar
  37. [37]
    K. Wang and S.I. Chu, Chem. Phys. Lett. 153 (1988) 87; S.I. Chu, Comm. At. Mol. Phys. 25 (1990) 101.CrossRefGoogle Scholar
  38. [38]
    T.W.B. Kibble, Phys. Rev. Lett. 16 (1966) 1054.CrossRefGoogle Scholar
  39. [39]
    See, for example, P. Agostini, P. Breger, A. L’Huillier, H.G. Muller, and G. Petite, Phys. Rev. Lett. 63 (1989) 2208.CrossRefGoogle Scholar
  40. [40]
    (a) C.Y. Tang, P.G. Harris, A.H. Mohagheghi, J.C. Bryant, C.R. Quick, J.B. Donahue, R.A. Reed, S. Cohen, W.W. Smith, and J.E. Steward, Phys. Rev. A 39 (1989) 6068; (b) W.W. Smith, C.Y. Tang, C.R. Quick, H.C. Bryant, P.G. Harris, A.H. Mohagheghi, J.B. Donahue, R.A. Reeder, H. Sharifian, J.E. Steward, H. Toutounchi, S. Cohen, T.C. Altman, and D.C. Rislove, J. Opt. Soc. Am. B 8 (1991) 17.CrossRefGoogle Scholar
  41. [41]
    C.Y. Tang, H.C. Bryant, P.G. Harris, A.H. Mohagheghi, R.A. Reeder, H. Sharifian, H. Toutounchi, C.R. Quick, J.B. Donahue, S. Cohen, and W.W. Smith, Phys. Rev. Lett. 66 (1991) 3124.CrossRefGoogle Scholar
  42. [42]
    C. Laughlin and S.I. Chu, Phys. Rev. A 48 (1993) 4654.CrossRefGoogle Scholar
  43. [43]
    A.L. Stewart, J. Phys. B11 (1978) 3852; A.W. Wishart, J. Phys. B 12 (1979) 3511.Google Scholar
  44. [44]
    For a review on ATI processes, see, R.R. Freeman and P.H. Bucksbaum, J. Phys. B 24 (1991) 325.Google Scholar
  45. [45]
    N. Bloembergen and E. Yablonovitch, Phys. Today 31 (1978) 23.CrossRefGoogle Scholar
  46. [46]
    P.A. Schulz, A.S. Sudbo, D.J. Krajnovich, H.S. Kowk, Y.R. Shen and Y.T. Lee, Ann. Rev. Phys. Chem. 30 (1979) 311.CrossRefGoogle Scholar
  47. [47]
    A. Carrington and J. Buttenshaw, Mol. Phys. 44 (1981) 267.CrossRefGoogle Scholar
  48. [48]
    C. Laughlin, K.K. Datta and S.I. Chu, J. Chem. Phys. 85 (1986) 1403; S.I. Chu, C. Laughlin and K.K. Datta, Chem. Phys. Lett. 98 (1983) 476.CrossRefGoogle Scholar
  49. [49]
    C. Cornaggia, D. Normand, J. Morellec, G. Mainfray and C. Manus, Phys. Rev. A 34 (1986) 207.Google Scholar
  50. [50]
    T.S. Luk and C.K. Rhodes, Phys. Rev. A 38 (1988) 6180.CrossRefGoogle Scholar
  51. [51]
    P.H. Bucksbaum, A. Zavriyev, H.G. Müller and D.W. Schumacher, Phys. Rev. Lett. 64 (1990) 1883.CrossRefGoogle Scholar
  52. [52]
    A. Giusti-Sugor, X. He, O. Atabek and F.M. Mies, Phys. Rev. Lett. 64 (1990) 515.CrossRefGoogle Scholar
  53. [53]
    A. Zavriyev, P.H. Bucksbaum, J. Squier and F. Saline, Phys. Rev. Lett. 70 (1993) 1077.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Shih-I Chu
    • 1
  1. 1.Department of ChemistryUniversity of Kansas and Kansas Institute for Theoretical and Computational ScienceLawrenceUSA

Personalised recommendations