Skip to main content

Biochemical Messengers in Postsurgical Repair and Adhesion Formation

  • Chapter
Pelvic Surgery

Abstract

Adhesion formation may be the result of prolonged deposition of excess fibrin, which is produced during coagulation and restoration of vascular hemostasis.1 The ability to remove deposited fibrin is dependent on the postsurgical environment and the cellular milieu. At surgery, multifaceted insults may be delivered to the tissue that will modulate the process of postsurgical fibrinolysis and repair. These may include (1) the disruption of the tissue architecture; (2) removal of cells from the surface of tissues by abrasion or drying; (3) disruption of vascular integrity; and (4) the introduction of foreign bodies. However, as a result of any surgical injury, an inflammatory response is initiated that allows the deposition of fibrin and may modulate the removal of the deposited fibrin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. diZerega GS, Rodgers KE. Intraperitoneal adhesions. In: The Peritoneum. New York: Springer-Verlag; 1992; 274–307.

    Chapter  Google Scholar 

  2. Simpson DM, Ross R. The neutrophilic leukocyte in wound repair. A study with antineutrophil serum. J Clin Invest. 1972; 51: 2009–2011.

    Article  PubMed  CAS  Google Scholar 

  3. Orita H, Nakamura RM, DiZerega GS. Kinetic analysis of postoperative peritoneal healing: incorporation of proline and glucosamine by exudative and tissue repair cells. Surg Forum. 1985; 36: 467–468.

    Google Scholar 

  4. Shimanuki T, Nakamura RM, diZerega GS. A kinetic analysis of peritoneal fluid cytology and arachidonic acid metabolism after abrasion and reabrasion of rabbit peritoneum. J Surg Res. 1986; 41: 245–251.

    Article  PubMed  CAS  Google Scholar 

  5. Leibovich SJ, Ross R. The role of macrophages in wound repair. A study with hydrocortisone and anti-macrophage serum. Am J Pathol. 1975; 78: 71–76.

    PubMed  CAS  Google Scholar 

  6. diZerega GS, Rodgers KE. Growth factors. In: The Peritoneum. New York: Springer-Verlag; 1992; 57–122.

    Chapter  Google Scholar 

  7. Rodgers KE, DiZerega GS. Modulation of peritoneal re-epithelialization by postsurgical macrophages. J Surg Res. 1991; 53: 542–548.

    Article  Google Scholar 

  8. Rodgers KE, DiZerega GS. Function of peritoneal exudate cells after abdominal surgery. J Invest Surg. 1993; 6: 9–23.

    Article  PubMed  CAS  Google Scholar 

  9. Golan A, Stolik O, Wexler S, Langer R, Ber A, David MR. Prostaglandins—a role in adhesion formation. An experimental study. Acta Obstet Gynecol Scand. 1990; 69: 339–341.

    Article  PubMed  CAS  Google Scholar 

  10. Golan A, Bernstein T, Wexler S, Neuman M, Bukovsky I, David MP. The effect of prostaglandins and aspirin: an inhibitor of prostaglandin synthesis on adhesion formation in rats. Hum Reprod (Eynsham). 1991; 6: 251–254.

    CAS  Google Scholar 

  11. Raferty AT. Regeneration of parietal and visceral peritoneum. Brit JSurg. 1973; 60: 293.

    Article  Google Scholar 

  12. diZerega GS, Rodgers KE. Fibroblasts and tisssue repair cells. In: The Peritoneum. New York: Springer-Verlag. 1992; 22–36.

    Chapter  Google Scholar 

  13. Martin BM, Gimbrone MA Jr, Unanue ER, Cotran RS. Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor. J Immunol. 1981; 126: 1510.

    PubMed  CAS  Google Scholar 

  14. Takemura R, Zena W. Secretory products of macrophages and their physiological function. Am J Physiol. 1984; 246: C8.

    Google Scholar 

  15. Leibovich SJ. Production of macrophage-dependent fibroblast-stimulating activity (M-FSA) by murine macrophages. Exp Cell Res. 1978; 113: 47.

    Article  PubMed  CAS  Google Scholar 

  16. Lemke H, Huget R, Flad HD. Biochemical characterization of a factor released by macrophages. Cell Immunol. 1975; 18: 70.

    Article  PubMed  Google Scholar 

  17. Schmidt JA, Mizel SB, Cohen D, Green I. Interleukin 1, a potential regulator of fibroblast proliferation. J Immunol. 1982; 128: 2177.

    Google Scholar 

  18. Fukasawa M, Yanagihara DL, Rodgers KE, diZerega GS. The mitogenic activity of peritoneal tissue repair cells: control by growth factors. J Surg Res. 1989; 47: 45.

    Article  PubMed  CAS  Google Scholar 

  19. Leibovich SJ, Wiseman DM, Nuseir N. Functionally heterogeneous macrophage sub-populations. In: Rovee D, Pines E, eds. Proceedings of the 2nd International Symposium on Tissue Repair. New York: A. R. Liss, 1987: 159–167.

    Google Scholar 

  20. Pledger WJ, Stiles CD, Antoniades HN, Scher CD. An ordered sequence of events is required before BALB/c-3Y3 cells become committed to DNA synthesis. Proc Natl Acad Sci USA. 1978; 74: 2839.

    Google Scholar 

  21. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. Type B transforming growth factor: a bifunctional regulatory of cellular growth. Proc Natl Acad Sci USA. 1985; 82: 199.

    Google Scholar 

  22. diZerega GS, Rodgers KE. Peritoneal macrophages. In: The Peritoneum. New York: Springer-Verlag; 1992: 171–209.

    Chapter  Google Scholar 

  23. Curnette JT, Babior BM. Biological defense mechanisms: the effects of bacteria and serum on superoxide production by the granulocyte. J Clin Invest. 1974; 53: 1662–1666.

    Article  Google Scholar 

  24. Fukasawa M, Bryant SM, diZerega GS. Superoxide anion production by postsurgical macrophages. J Surg Res. 1988; 45: 382–388.

    Article  PubMed  CAS  Google Scholar 

  25. Kuraoka S, Campeau JD, Nakamura RM, diZerega GS. Modulation of postsurgical macrophage function by early postsurgical polymorphonuclear leukocytes. J Surg Res. 1992; 53: 245–250.

    Article  PubMed  CAS  Google Scholar 

  26. Randall RW, Eakins KE, Higgs GA. Inhibition of arachidonic acid cyclooxygenase and lipo-oxygenase activities by indomethacin and compound BW755. Agents Actions. 1980; 10: 553–555.

    Article  PubMed  CAS  Google Scholar 

  27. Schnyder J, Dewald B, Baggiolini M. Effects of cyclooxygenase inhibtors and prostaglandin E2 on macrophage activation in vitro. Prostaglandins. 1981; 22: 411–419.

    PubMed  CAS  Google Scholar 

  28. Vanderhock JY, Bailey JM. Activation of a 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes by the anti-inflammatory agent ibuprofen. JBiol Chem. 1984; 259: 6752–6755.

    Google Scholar 

  29. Rodgers KE, Ellefson D, Girgis W, Scott L, diZerega GS. Effects of tolmetin sodium dihydrate on normal and postsurgical peritoneal cell function. Int J lmmunopharmacol. 1988; 10: 111–120.

    Article  CAS  Google Scholar 

  30. Postlethwaite AE, Lachman LB, Mainadri CL, Kang AH. Interleukin-1 stimulation of collagenase production by cultured fibroblasts. J Exp Med. 1983; 157: 801–806.

    Article  PubMed  CAS  Google Scholar 

  31. Bronson RE, Bertiolami CN, Siebert EP. Modulation of fibroblast growth and glycosaminoglycan synthesis by interleukin-1. Collagen Relat Res. 1987; 7: 323–332.

    Article  CAS  Google Scholar 

  32. Matsushima K, Bano M, Kidwell WR, Oppenheim JJ. Interleukin-1 increases collagen type IV production by murine mammary epithelial cells. J Immunol. 1985; 134: 904–909.

    PubMed  CAS  Google Scholar 

  33. Bevilacqua MP, Pober JS, Majeau GR, Contran RA, Gimbrone MA. Interleukin-1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med. 1984; 160: 618–623.

    Article  PubMed  CAS  Google Scholar 

  34. Bevilacqua MP, Schleef RR, Gimbrone MA, Loskutoff DJ. Regulation of the fibribolytic system of cultures of human endothelium by interleukin-1. J Clin Invest. 1986; 78: 587–591.

    Article  PubMed  CAS  Google Scholar 

  35. Emeis JJ, Kooestra J. Interleukin-1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultures endothelial cells. J Exp Med. 1986; 163: 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  36. Nachman RL, Hajjar KA, Silverstein RL, Dinarello CA. Interleukin-1 induces endothelial cell synthesis of plasminogen activator inhibitor. J Exp Med. 1986; 163: 1545–1547.

    Article  Google Scholar 

  37. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986; 163: 740–745.

    Article  PubMed  CAS  Google Scholar 

  38. McBride WH, Mason K, Withers HR, Davis C. Effect of interleukin-1, inflammation, and surgery on the incidence of adhesion formation after abdominal irradiation in mice. Cancer Res. 1898; 49: 169–173.

    Google Scholar 

  39. Herschlag A, Hemess IGO, Wimberly HC, Bleven ML, Diamond MP, Polan ML. The effect of interleukin-1 on adhesion formation in the rat. Am J Obstet Gynecol. 1991; 165: 771–774.

    Google Scholar 

  40. Abe H, Rodgers KE, Ellefson D, diZerega GS. Kinetics of interleukin-1 and tumor necrosis factor secretion by rabbit macrophages recovered from the peritoneal cavity after surgery. JInvest Surg. 1991; 4: 141–151.

    Article  CAS  Google Scholar 

  41. Ko SD, Page RC, Narayanan AS. Fibroblast heterogeneity and prostaglandin regulation of subpopulation. Proc Natl Acad Sci USA. 1977; 74: 3429–3440.

    Article  PubMed  CAS  Google Scholar 

  42. Phan SH, McGarry BM, Loeffler KM, Kunkel SL. Regulation of macrophage derived fibroblast growth factor release by arachidonate metabolites. J Leukocyte Biol. 1987; 42: 106–113.

    PubMed  CAS  Google Scholar 

  43. Korn JH, Halushka PV, LeRoy EC. Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest. 1980; 65: 542–554.

    Article  Google Scholar 

  44. Unkeless J, Gordon S, Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974; 139: 834–850.

    Article  PubMed  CAS  Google Scholar 

  45. Drapler JC, Pen JF. Involvement of prostaglandins in lipoplysaccharide-mediated regulation of plasminogen activator synthesis by inflammatory macrophages. Int J Immunopharmacol. 1984; 6: 345–352.

    Article  Google Scholar 

  46. Orita H, Campeau JD, Gale JA, Nakamura RM, diZerega GS. Differential secretion of plasminogen activator by postsurgical activated macrophages. J Surg Res. 1986; 41: 569–573.

    Article  PubMed  CAS  Google Scholar 

  47. Fukasawa M, Campeau JD, Girgis W, Bryant SM, Rodgers KE, diZerega GS. Production of protease inhibitors by postsurgical macrophages. J Surg Res. 1989; 46: 256–261

    Article  PubMed  CAS  Google Scholar 

  48. Kuroaka S, Campeau JD, Rodgers KE, Nakamura RM, diZerega GS. Effects of interleukin 1 on postsurgical macrophage secretion of protease and inhibitor activites. J Surg Res. 1992; 52: 71–78.

    Article  Google Scholar 

  49. Albrechtsen OK. The fibrinolytic activity of human tissues. Br J Haematol. 1957; 3: 284–291.

    Article  PubMed  CAS  Google Scholar 

  50. Albrechtsen OK. The fibrinolytic activity of animal tissues. Acta Physiol Scand. 1957; 39: 284–290.

    Article  PubMed  CAS  Google Scholar 

  51. Porter JM, McGregor FH, Mullen DC, Silver D. Fibrinolytic activity of mesothelial surfaces. Surg Forum. 1969; 20: 80–82.

    PubMed  CAS  Google Scholar 

  52. Merlo G, Fausome G, Barbero C, Castagna B. Fibrinolytic activity of the human peritoneum. Eur Surg Res. 1980; 12: 433–438.

    Article  PubMed  CAS  Google Scholar 

  53. Vipond MN, Whawell SA, Thompson JN, Dudley JAF. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet. 1990; 335: 1120–1122.

    Article  PubMed  CAS  Google Scholar 

  54. van der Poll T, Levi M, Buller HR, van Deventer SJA, de Boer JP, Hack CE, ten Cate JW. Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med. 1991; 175: 729–732.

    Article  Google Scholar 

  55. Gervin AS, Puckett CL, Silver D. Serosal hypofibrinolysis. A cause of postoperative adhesions. Am J Surg. 1973; 125: 80–88.

    Article  PubMed  CAS  Google Scholar 

  56. Raftery AT. Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. Eur Surg Res. 1981; 13: 397–401.

    Article  PubMed  CAS  Google Scholar 

  57. Buckman RF Jr, Maij MC, Buckman PD, Hufnagel HV, Gervin AS. A physiologic basis for the adhesion-free healing of deperitonealized surfaces. J Surg Res. 1976; 21: 67–76.

    Article  PubMed  Google Scholar 

  58. van Hinsbergh VWM, Kooistra T, Scheffer MA, van Bockel JH, van Muijen GNP. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood. 1990; 75: 1490–1497.

    PubMed  Google Scholar 

  59. Hau T, Payne D, Simmons RL. Fibrinolytic activity of the peritoneum during experimental peritonitis. Surg Gynecol Obstet. 1979; 148: 415–418.

    PubMed  CAS  Google Scholar 

  60. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 1971; 231: 232–35.

    PubMed  CAS  Google Scholar 

  61. Flower R, Gryglewski R, Herbaczynska-Cedro K, Vane JR. Effects of anti-inflammatory drugs on prostaglandin biosynthesis. Nature New Biol. 1972; 238: 104–106.

    PubMed  CAS  Google Scholar 

  62. Larsson B, Svanberg SG, Swolin K. Oxyphenbutazone-an adjuvant to be used in prevention of adhesions in operations for fertility. Fertil Steril. 1977; 28: 807–808.

    PubMed  CAS  Google Scholar 

  63. Kapur BML, Talwar JR, Gulati SM. Oxyphenbutazone: anti-inflammatory agent in prevention of peritoneal adhesions. Arch Surg. 1969; 98: 301–302.

    Article  PubMed  CAS  Google Scholar 

  64. Siegler AM, Kontopoulos V, Wang CF. Prevention of postoperative adhesions in rabbits with ibuprofen, a nonsteroidal anti-inflammatory agent. Fertil Steril. 1980; 34: 46–49.

    PubMed  CAS  Google Scholar 

  65. Nishimura K, Nakamura RM, diZerega GS. Biochemical evaluation of postsurgical wound repair: prevention of intraperitoneal adhesion formation with ibuprofen. J Surg Res. 1983; 34: 219–226.

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura K, Shimanuki T, diZerega GS. Ibuprofen in the prevention of experimentally induced postoperative adhesions. Am J Med. 1984; 77: 102–106.

    Article  PubMed  CAS  Google Scholar 

  67. Nishimura K, Nakamura RM, diZerega GS. Ibuprofen inhibition of postsurgical adhesion formation: a time and dose response biochemical evaluation of rabbits. JSurg Res. 1984; 36: 115–124.

    Article  CAS  Google Scholar 

  68. Rodgers KE, Bracken K, Richer L, Girgis W, diZerega GS. Inhibition of postsurgical adhesions by loposomes containing nonsteroidal anti-inflammatory drugs. Int Jlnfertil. 1990; 35: 315–320.

    CAS  Google Scholar 

  69. Rodgers KE, Girgis W, Johns D, diZerega GS. Intraperitoneal tolmetin prevents postsurgical adhesion formation in rabbits. Int Jlnfertil. 1990; 35: 40–45.

    CAS  Google Scholar 

  70. Rodgers KE. Nonsteroidal anti-inflammatory drugs (NSAIDs) in the treatment of postsurgical adhesion. In: diZerega GS, Malinak LR, Diamond MD, Linsky CP, eds. Treatment of Adhesions. New York: Wiley-Liss; 1990: 119–130.

    Google Scholar 

  71. Shimanuki T, Nishimura K, diZerega GS. Prevention of postoperative peritoneal adhesions in rabbits with ibuprofen. Semin Reprod Endocrinol. 1985; 3: 295–300.

    Article  Google Scholar 

  72. Plescia OJ, Smith AH, Greenwich K. Subversion of immune system by tumor cells and the role of prostaglandins. Proc Natl Acad Sci USA. 1975; 72: 1848–1853.

    Article  PubMed  CAS  Google Scholar 

  73. Bonney RJ, Davies P. Possible autoregulatory functions of the secretory products of mononuclear phagocytes. Contemp Top Immunol. 1984; 10: 199–223.

    Google Scholar 

  74. Ratzan KR, Musher DM, Keusch GT, Weinstein L. Correlation of increased metabolic activities resistance to infection, enhanced phagocytosis and inhibition of bacterial growth by macrophages from listeria and BCG-infected mice. Infect Immunol. 1972; 5: 499–503.

    CAS  Google Scholar 

  75. Johnston RB, Godzik CA, Cohn ZA. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978; 142: 115–122.

    Article  Google Scholar 

  76. Hibbs JB, Chapman HA, Weinberg JB. The macrophage as an antineoplastic surveilliance cell: biological perspective. J Reticuloendothel Soc. 1978; 24: 549–556.

    PubMed  CAS  Google Scholar 

  77. Rodgers KE, Ellefson D, Girgis W, diZerega GS. Protease and protease inhibitor secretion by post-surgical macrophages following in vitro exposure to tolmetin. Agents Actions. 1992; 36: 248–257.

    PubMed  CAS  Google Scholar 

  78. Rodgers KE, Ellefson DD, Girgis W, diZerega GS. Modulation of postsurgical cell infiltration and fibrinolytic activity by tolmetin in two species. J Surg Res. 1994; 56: 314–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodgers, K.E. (1997). Biochemical Messengers in Postsurgical Repair and Adhesion Formation. In: diZerega, G.S., et al. Pelvic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1864-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1864-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7316-5

  • Online ISBN: 978-1-4612-1864-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics