Skip to main content

Boltzmann-Gibbs Weights in the Branching Random Walk

  • Chapter
Classical and Modern Branching Processes

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 84))

Abstract

Considering a branching random walk as a tree model for many physical disordered systems the a.s. convergence of the free energy is proved under minimal assumption (finite mean) on the partition function. The overlap of two nodes in the tree is their last common ancestor (or the common part of their branches). Under a “k log k-type” assumption the overlap of two nodes of height n picked up with Boltzmann-Gibbs weights is proved to have an explicit limit distribution. This extends a result of Joffe and simplify a proof of Derrida and Spohn.

AMS(MOS) subject classifications. Primary: 60J80, 60K35. Secondary: 60F10, 82C41.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen S. and Hering H. Branching processes. Birkhauser (1983).

    Google Scholar 

  2. Biggins J. D. Martingale convergence in the branching random walk. J. Appl. Prob. 14 25–37 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggins J. D. Chernoff theorem in the branching random walk. J. Appl. Prob. 14 630–636 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  4. Biggins J. D. Growth rates in the branching random walk. Z. Wahr. und Verw. Gebeite 48 17–34 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramson M Minimal displacement of branching random walk. Zeit. Wahr. 45 89–108 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramson M. The convergence of solutions of the Kolmogorov nonlinear diffusion equation to travelling waves. Memoirs Am. Math. Soc. 44 1–190 (1983).

    MathSciNet  Google Scholar 

  7. Buffet E. Patrick A. and Pulé J. V. Directed polymers on trees: a martingale approach. J. Phys. A. Math. Gen. 1823–1834 (1993).

    Google Scholar 

  8. Buhler W. J. Generations and Degree of Relationship in Supercritical Markov Branching Processes. Z. Wahr. und Verw. Gebeite 18 141–152 (1971).

    Article  MathSciNet  Google Scholar 

  9. Chauvin B. Arbres et processus de branchements. Thèse de Troisième Cycle Univ. Paris VI (1985).

    Google Scholar 

  10. Chauvin B. and Rouault A. KPP equation and supercritical branching brow­nian motion in subcritical areas. Application to spatial trees. Probab. Th. Rel. Fields 80 299–314 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. Dekking F.M. and Speer E.R. On the shape of the wavefront of branching random walk (this volume).

    Google Scholar 

  12. Derrida B. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B24 2613–1626 (1981).

    MathSciNet  Google Scholar 

  13. Derrida B. Directed polymers in a random medium. Physica A163 71–84 (1990).

    MathSciNet  Google Scholar 

  14. Derrida, B. and Spotlit, H. Polymers on Disordered Trees, Spin Glasses and Travelling waves. J. Stat. Phys., 51 817–840, (1988).

    Article  MATH  Google Scholar 

  15. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F5, 965–974 (1975).

    Article  Google Scholar 

  16. Hawkes, J. Trees generated by a simple branching process. J. London Math. Soc. (2)24 373–384, (1981).

    Article  MathSciNet  Google Scholar 

  17. Joffe, A. Remarks on the structure of trees with applications to supercritical Galton-Watson processes. In Advances in Prob., 5, ed. A. Joffe and P. Ney, Dekker, New-York, 263–268, (1978).

    Google Scholar 

  18. Joffe, A. A new martingale in branching random walk. Annals of Appl. Pro bob., 3 1145–1150, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  19. Joffe, A. and Moncayo, A. Random variables, Trees and Branching Ramdom Walks. Adv. in Math., 10 401–416, (1973).

    MathSciNet  MATH  Google Scholar 

  20. Kingman, J. F. C. The first birth problem for an age-dependent branching process. Annals of Probab., 3 790–801, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q. Flows in networks and Hausdorff measures associated with applications to fractal sets in Euclidian space. Preprint Université Paris VI, (1993).

    Google Scholar 

  22. Liu, Q. and Rouault A. On two measures defined on the boundary of a branching tree. IMA Symposium on Classical and Modern Branching Processes. (This volume).

    Google Scholar 

  23. Lyons, R. Probability and trees. Preprint (1994).

    Google Scholar 

  24. Lyons, R., Pemantle R., Peres Y. Ergodic theory on Galton-Watson trees, I and II. Ergodic Theory Dynamical Systems,to appear (1994).

    Google Scholar 

  25. Mézard, M., Parisi, G. and Virasoro, M. Spin glass theory and beyond. World Scientific. Singapore. New Jersey, (1987).

    Google Scholar 

  26. Neveu, J. Arbres et processus de Galton-Watson. Ann. IHP., 22 199–208, (1986).

    MathSciNet  MATH  Google Scholar 

  27. Neveu, J. Multiplicative martingales for spatial branching processes. Seminar. Stoch. Proc. Princeton 233–243, Birkhauser (London), (1987).

    Google Scholar 

  28. O’Brien, G. L. A limit theorem for simple maxima and heavy branches in Galton-Watson trees. J. Appl. Prob., 17 539–545, (1980).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chauvin, B., Rouault, A. (1997). Boltzmann-Gibbs Weights in the Branching Random Walk. In: Athreya, K.B., Jagers, P. (eds) Classical and Modern Branching Processes. The IMA Volumes in Mathematics and its Applications, vol 84. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1862-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1862-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7315-8

  • Online ISBN: 978-1-4612-1862-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics