Skip to main content

On Two Measures Defined on the Boundary of a Branching Tree

  • Chapter
Classical and Modern Branching Processes

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 84))

Abstract

Replying to a question of A. Joffe, we show that two random measures defined on the boundary of a Galton-Watson tree are mutually singular. We compare them in a precise way, and we extend this result to marked trees in the framework of random fractals.

AMS(MOS) subject classifications. Primary- 60J80; Secondary: 28A78, 28A80, 05CO5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B. and Ney, P.E. (1972) Branching Processes, Springer Verlag, Berlin.

    Book  MATH  Google Scholar 

  2. Biggins, J.D. (1977) Martingale convergence in the branching random walk, J. Appl. Probab. 14 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggins, J.D. and Bingham, N.H. (1993) Large deviations in the supercritical branching process, Adv. Appl. Prob.25 757–772.

    Article  MathSciNet  MATH  Google Scholar 

  4. Billingsley, P. (1965) Ergodic Theory and Information, Wiley, New York.

    Google Scholar 

  5. Dacunha-Castelle, D. et Duflo, M. (1983) Probabilités et Statistiques, 2. Probl¨¨mes ¨¤ temps mobile, Masson, Paris.

    Google Scholar 

  6. Dubuc, S. (1971) La densité de la loi limite d’un processus en cascade expansif, Z. Warscheinlichkeitstheorie 19, 281–290.

    Article  MathSciNet  Google Scholar 

  7. Falconer, K.J. (1986) Random Fractals, Math. Proc. Camb. Phil. Soc. 100, 559–582.

    Article  MathSciNet  MATH  Google Scholar 

  8. Graf, S., Mauldin, R.D. and Williams, S.C. (1988) The exact Hausdorff dimension in random recursive constructions, Mem. Amer. Math. Soc., 71 n¡ã381.

    MathSciNet  Google Scholar 

  9. Hawkes, J. (1981) Trees generated by a simple branching process. J. London Math. Soc. (2)24 373–384.

    Article  MathSciNet  Google Scholar 

  10. Joffe, A. (1978) Remarks on the structure of trees with applications to supercritical Galton-Watson processes. In Advances in Prob. 5, ed. A.Joffe and P.Ney, Dekker, New- York p.263–268.

    MathSciNet  Google Scholar 

  11. Kahane, J.P. et Peyri¨¨re, J. (1976) Sur certaines martingales de Mandelbrot. Adv. in Math., 22,131–145.

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Q. (1992) The exact Hausdorff dimensions of a branching set. Prépublication n¡ã135, Laboratoire de Probabilités, Université Paris VI.

    Google Scholar 

  13. Liu, Q. (1993) Sur quelques probl¨¨mes ¨¤ propos des processus de branchement, des flots dans les réseaux et des mesures de Hausdorff associées. Th¨¨se, Université Paris VI, Laboratoire de Probabilités.

    Google Scholar 

  14. Liu, Q. (1994) Sur une équation fonctionnelle et ses applications (I): une extension du théor¨¨me de Kesten-Stigum concernant des processus de branchement. Prépublicaiion de l’IRMAR.

    Google Scholar 

  15. Lyons, R. (1994) A simple path to Biggins’ martingale convergence for branching random walk. preprint

    Google Scholar 

  16. Mauldin, R.D. and Williams, S.C. (1986) Random constructions, asymptotic geometric and topological properties, Trans. Amer. Math. Soc. 29 5, 325–346.

    Article  MathSciNet  Google Scholar 

  17. Neveu, J. (1986) Arbres et Processus de Galton-Watson. Ann. IHP 22.

    Google Scholar 

  18. O’Brien, G.L. (1980) A limit theorem for sample maxima and heavy branches in Galton-Watson trees. J. Appl. Prob. 17 539–545.

    Article  MathSciNet  MATH  Google Scholar 

  19. Peres, Y., Lyons, R., and Pemantle, R. (1995). Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure. Erg odic Theory Dynamical Systems 15 593–620.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Q., Rouault, A. (1997). On Two Measures Defined on the Boundary of a Branching Tree. In: Athreya, K.B., Jagers, P. (eds) Classical and Modern Branching Processes. The IMA Volumes in Mathematics and its Applications, vol 84. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1862-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1862-3_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7315-8

  • Online ISBN: 978-1-4612-1862-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics