Model fitting procedures for nonlinear factor analysis using the errors-in-variables parameterization

  • Yasuo Amemiya
  • Ilker Yalcin
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 120)


Traditional factor analysis and structural equation modeling use models which are linear in latent variables. Here, a general parametric nonlinear factor analysis model is introduced. The identification problem for the model is discussed, and the errors-invariables parametrization is proposed as a solution. Two general procedures for fitting the model are described. Tests for the goodness of fit of the model are also proposed. The usefulness and comparison of the model fitting procedures are studied based on a simulation.


Nonlinear Factor Error Variance Estimate Factor Vector Approximate Likelihood Maximum Normal Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amemiya, Y. (1985). What should be done when an estimated between-group covariance matrix is not nonnegative definite? AmericanStatisti.39 112–117.zbMATHCrossRefGoogle Scholar
  2. Amemiya, Y. (1993a). Instrumental variable estimation for nonlinear factor analysis. In Multivariate Analysis: Future Directions 2. (C.M. Cuadras, C.R. Rao, Ed.), pp. 113–129, North-Holland Series in Statistics and Probability, Amsterdam.Google Scholar
  3. Amemiya, Y. (1993b). On nonlinear factor analysis.Proceedings of ASA Social Statistics Section290–294.Google Scholar
  4. Amemiya, Y. and Anderson, T. W. (1990). Asymptotic chi-square tests for a large dass of factor analysis models. Ann.Statist.18 1453–1463.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anderson, T. W. and Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann.Statist.18 759–771.MathSciNetCrossRefGoogle Scholar
  6. Browne, M. W. and Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variate models.British J. Math. Statist. Psych.41 193–208.MathSciNetzbMATHGoogle Scholar
  7. Carroll, R. J. and Ruppert, D. (1982). A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model.Jour. of Amer. Stat. Assoc.77 878–882.CrossRefGoogle Scholar
  8. Etezadi-Amoli, J. and McDonald, R. P. (1983). A second generation nonlinear factor analysis.Psychometrika48 315–342.zbMATHCrossRefGoogle Scholar
  9. Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis.Psychometrika32 443–482.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.Psychometrika34 183–202.CrossRefGoogle Scholar
  11. Jöreskog, K. G. (1977). Factor analysis by least squares and maximum likelihood methods. InStatistical Methods for Digital ComputersVol. 13, K. Enslein, R. Ralston, and S.W. Wilf (eds.). Wiley, New York.Google Scholar
  12. McDonald, R. P. (1962). A general approach to nonlinear factor analysis.Psychometrika27 397–415.MathSciNetCrossRefGoogle Scholar
  13. McDonald, R. P. (1967a). Numerical methods for polynomial models in nonlinear factor analysis.Psychometrika32 77–112.CrossRefGoogle Scholar
  14. Mooijaart, A. and Bender, P. (1986). Random polynomial factor analysis. InData AnalysisandInformatics IV(E. Diday et al., Ed.), pp. 241–250. Elsevier Science Publishers B.V., New York.Google Scholar
  15. Pantula, S. G. and Fuller, W. A. (1986). Computational algorithms for the factor model. Commun.Statist. Part B15, 227–259.MathSciNetzbMATHGoogle Scholar
  16. van Houwelingen, J. C. (1988). Use and abuse of variance models in regression.Biometrics44 1073–1081.zbMATHCrossRefGoogle Scholar
  17. Yalcin, I. (1995). Nonlinear factor analysis. Ph.D. dissertation. Iowa State University.IowaGoogle Scholar
  18. Yalcin, I. and Amemiya, Y. (1993). Fitting of a general nonlinear factor analysis model.Proceedings of ASA Statistical Computing Section92–96.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1999

Authors and Affiliations

  • Yasuo Amemiya
    • 1
  • Ilker Yalcin
    • 1
  1. 1.Iowa State UniversityUSA

Personalised recommendations