Skip to main content

Architecture and Ergonomics of Imaging Workstations

  • Chapter
  • 304 Accesses

Abstract

Display workstations transform the binary representation of an image to visual signals and thus serve as the link between invisible pixels and the eye. The bit pattern stored in computer memory is converted to video signals, which in turn stimulate the light-emitting phosphors on the display screen. Therefore, what the eyes see is ultimately dictated by the display system’s ability to faithfully reproduce the original image. Unless it becomes possible to transfer visual information directly from computer memory to the visual cortex, this mode of signal transfer which relies on light photons will remain vital to image presentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones O. Introduction to the X Window System. Englewood Cliffs, NJ: Prentice Hall; 1989.

    Google Scholar 

  2. Weinberg W.S., Hayrapetian A.S., Cho P.S., Valentino D.J., Taira R.K., Huang H.K. X-window based 2k display workstation. Proc. SPIE 1991; 1446: 35–39.

    Article  ADS  Google Scholar 

  3. Glasford G.N. Fundamentals of Television Engineering. New York: McGraw-Hill; 1974: 64–74.

    Google Scholar 

  4. Sherr S. Fundamentals of Display System Design. New York: Wiley; 1970:399–411.

    Google Scholar 

  5. Ji T., Roehrig H., Blume H., Seeley G., Browne M. Physical and psychophysical evaluation of CRT noise performance. Proc. SPIE 1991; 1444: 136–150.

    Article  ADS  Google Scholar 

  6. Dietch L., Palac K., Chiodi W. Performance of high-resolution flat tension mask color CRTs. SID Dig. 1986; 322–323.

    Google Scholar 

  7. Awata Y., Sumiya H., Shibata Y., Umemura S. A new large-screen high-resolution Trinitron color display monitor for computer graphics application. SID Dig. 1986; 459–462.

    Google Scholar 

  8. Keller P.A. Cathode-ray tube displays for medical imaging, J. Dig. Imag. 1990; 3: 15–25.

    Article  Google Scholar 

  9. Lisk K.G. SMPTE test pattern for certification of medical diagnostic display devices. Proc. SPIE 1984; 486: 79–82.

    Article  Google Scholar 

  10. Mayer J.H. Revolutionizing mass storage. SunExpert 1995; 6: 45–50.

    Google Scholar 

  11. Dwyer S.J., Cox G.G., Cook L.T., McMillan J.H., Templeton A.W. Experience with high resolution digital gray scale display systems. Proc. SPIE 1990; 1234: 132–138.

    Article  ADS  Google Scholar 

  12. Taira R.K., Simons M., Razavi M., Kangarloo H., Boechat M.I., Hall T., Chuang K.S., Huang H.K., Eldredge S. High resolution workstations for primary and secondary radiology readings. Proc. SPIE 1990: 1234: 18–25.

    Article  ADS  Google Scholar 

  13. Arenson R.L., Seshadri S.B., Kundel H.L., DeSimone D., Van der Voorde F., Gefter W.B., Epstein D.M., Miller W.T., Aronchick J.M., Simon M.B., Lanken P.N., Khalsa S., Brikman I., Davey M., Brisbon N. Clinical evaluation of a medical image management system for chest images. Am. J. Roentg. 1988; 150: 55–59.

    Google Scholar 

  14. Cho P.S., Huang H.K., Tillisch J., Kangarloo H. Clinical evaluation of a radiologic picture archiving and communication system for a coronary care uinit. Am. J. Roentg. 1988; 151: 823–827.

    Google Scholar 

  15. Ehricke H-H., Grunert T., Buck T., Kolb R., Skalj M. Medical workstations for applied imaging and graphics research. Comp. Med. Imag. 1994; 18:403–411.

    Article  Google Scholar 

  16. Horii S.C., Horii H.N. An eclectic look at viewing station design. Proc. SPIE Med. Imag. II 1988; 914: 920–928.

    Google Scholar 

  17. Horii S.C. Electronic imaging workstations: ergonomic issues and the user interface. In: Syllabus: Special course in computers for clinical practice and education in radiology. Radiological Society of North America; 1992: 125–134.

    Google Scholar 

  18. Stammerjohn L.W., Smith M.J., Cohen B.G.F. Evaluation of work station design factors in VDT operations. Hum Fact. 1981; 23(4): 401–412.

    Google Scholar 

  19. Kaufman J.E., ed. IES Lighting Handbook. (5th ed.). New York: Illuminating Engineering Society; 1972: 1–9.

    Google Scholar 

  20. Rancourt J., Grenawalt W. Approaches to enhancing VDT viewability and methods of assessing the improvements. Proc. SPIE 1986; 624: 8–13.

    Article  Google Scholar 

  21. Grandjean E. Design of VDT workstation. In: Salvendy G., ed. Handbook of Human Factors. New York: Wiley; 1987: 1359–1397.

    Google Scholar 

  22. Morse RS. Glare filter preference: influence of subjective and objective indices of glare, sharpness, brightness, contrast, and color. Proc. Hum. Fact. Soc. (29th Ann. Mtg.); 1985: 782–786.

    Google Scholar 

  23. Cushman W.H. Illumination. In: Salvendy G., ed. Handbook of Human Factors. New York: Wiley; 1987: 670–695.

    Google Scholar 

  24. van der Heiden G.H., Brauninger U., Grandjean E. Ergonomic studies on computer-aided design. In: Grandjean E., ed. Ergonomics and Health in Modern Offices. London: Taylor & Francis; 1984: 119–128.

    Google Scholar 

  25. Arenson R.L., Charkraborty D.P., Seshadri S.B., Kundel H.L. The digital imaging workstation. Radiology 1990; 176: 303–315.

    Google Scholar 

  26. Ho B.K.T., Ratib O., Horii S.C. PACS workstation design. Comp. Med. Imag. 1991; 15: 147–155.

    Article  Google Scholar 

  27. Roehrig H., Blume H., Ji T-L., Browne M. Performance tests and quality control of cathode ray tube displays. J. Dig. Imag. 1990; 3: 134–145.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cho, P.S., Huang, H.K. (1997). Architecture and Ergonomics of Imaging Workstations. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics