Fouling and Protein Adsorption

Effect of Low-Temperature Plasma Treatment of Membrane Surfaces
  • J. Johansson
  • H. K. Yasuda
  • R. K. Bajpai
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


Adsorption of proteins and the effect of the chemical nature of membrane surfaces on protein adsorption were investigated using 14C-tagged albumin and several microporous membranes (polyvinilydene fluoride, PVDF; nylon; polypropylene, PP; and polycarbonate, PC). The membrane surfaces were modified by exposing them to low-temperature plasma of several different monomers (n-butane, oxygen, nitrogen alone or as mixtures) in a radiofrequency plasma reactor. Transients in the permeability of albumin solutions through the membranes and changes in flux of distilled water through the membranes before and after adsorption of albumin were used to investigate the role of protein adsorption on membrane fouling. The results show that the extent of adsorption of albumin on hydrophobic membranes was considerably more than that on hydrophilic membranes. The hydrophilic membranes were susceptible to electrostatic interactions and less prone to fouling. A pore-blocking model was successfully used to correlate the loss of water flux through pores of defined geometry.

Index Entries

Albumin polymer membranes permeability radiofrequency plasma radiochemical 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ho, W. S. W. and Sirkar, K. K. (1992), Membrane Handbook, Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
  2. 2.
    Prasad, R., and Sirkar, K. K. (1988), AIChE J. 34, 177.CrossRefGoogle Scholar
  3. 3.
    Wang, C. J., Bajpai, R. K., and Iannotti, E. L. (1991), Appl. Biochem. Biotechnol. 28/29, 589–603.CrossRefGoogle Scholar
  4. 4.
    Scheler, C., Popovic, M., Iannotti, E. L., Mueller, R., and Bajpai, R. K. (1996), J. Appl. Biochem. Biotechnol. 57/58, 29–38.CrossRefGoogle Scholar
  5. 5.
    Baker, R. W. (1991), Membrane Separation Systems: Recent Developments and Future Directions, Noyes Data Corp., Park Ridge, NJ.Google Scholar
  6. 6.
    Smolders, C. A. and van den Boomgaard, T. (1989), J. Membr. Sci. 40, 121–122.CrossRefGoogle Scholar
  7. 7.
    van den Berg, G. B. and Smolders, C. A. (1988), Filtration Separation 115–122.Google Scholar
  8. 8.
    Aimar, P and Howell, J. A. (1991), J. Membr. Sci. 59, 81–99.CrossRefGoogle Scholar
  9. 9.
    Matthiasson, E., and Civik, B. (1980), Desalination 35, 59–103.CrossRefGoogle Scholar
  10. 10.
    Bowen, W. R. and Gan, Q. (1991), Biotechnol. Bioengin. 38, 688–696.CrossRefGoogle Scholar
  11. 11.
    Gekas, V. (1988), Desalination 68, 77–92.CrossRefGoogle Scholar
  12. 12.
    Tracey, E. M. and Davis, R. H. (1994), J. Colloid Interface Sci. 167, 104–116.CrossRefGoogle Scholar
  13. 13.
    Yasuda, H. (1985), Plasma Polymerization, Academic, New York.Google Scholar
  14. 14.
    Andrade, J. (1985), Surface Interfacial Aspects of Biomedical Polymers, Plenum, New York.CrossRefGoogle Scholar
  15. 15.
    Michaels, A. (1989), Chem. Technol. 162.Google Scholar
  16. 16.
    McGuire, J. and Krishdasima, V. (1991), Food Technol. 92–96.Google Scholar
  17. 17.
    Brink, L. E. S., and Romijn, D. J. (1990), Desalination 78, 209–233.CrossRefGoogle Scholar
  18. 18.
    Fane, A. G., Fell, C. J. D., and Waters, A. G. (1983), J. Membr. Sci. 16, 211–224.CrossRefGoogle Scholar
  19. 19.
    Hlavacek, M., and Bouchet, F. (1993), J. Membr. Sci. 82, 285–295.CrossRefGoogle Scholar
  20. 20.
    Marshall, A. D., Munro, P. A., and Tragardh, G. (1993), Desalination 91, 65–108.CrossRefGoogle Scholar
  21. 21.
    Norde, W. (1986), Adv. Colloid Interface Sci. 25, 267–340.CrossRefGoogle Scholar
  22. 22.
    Chandavarkar, 1990.Google Scholar
  23. 23.
    Mueller, J., and Davis, R. H. (1996), J. Membr. Sci. 116(1), 47–60.CrossRefGoogle Scholar
  24. 24.
    Brunauer, S., Emmet, P. H., and Teller, J. (1938), Am. Chem. Soc. 60, 309–319.CrossRefGoogle Scholar
  25. 25.
    Persson, K. M. and Nilsson, J. L. (1991), Desalination 80, 123–138.CrossRefGoogle Scholar
  26. 26.
    Gök, E., Kiremitci, M., and Ates, I. S. (1994), Reactive Polymers 24, 41–48.CrossRefGoogle Scholar
  27. 27.
    Yui, N., Suzuki, Y., Mori, H., and Terano, M. (1995), Polymer J. 27(6), 614–622.CrossRefGoogle Scholar
  28. 28.
    Persson, K. M., Capannelli, G., Bottino, A., and Trägard, G. (1993), J. Membr. Sci. 76, 61–71.CrossRefGoogle Scholar
  29. 29.
    Pitt, A. (1987), J. Parenteral Sci. 41(3), 110–113.Google Scholar
  30. 30.
    Kelly, S. T., Opong, W. S., and Zydney, A. L. (1993), J. Membr. Sci. 80, 175–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. Johansson
    • 1
  • H. K. Yasuda
    • 1
  • R. K. Bajpai
    • 1
  1. 1.Chemical Engineering DepartmentUniversity of Missouri - ColumbiaColumbia

Personalised recommendations