Advertisement

Batch Foam Recovery of Sporamin from Sweet Potato

  • Samuel Ko
  • Veara Loha
  • Aleš Prokop
  • Robert D. Tanner
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The major sweet potato root protein, sporamin (which comprises about 80-90% of the total protein mass in the sweet potato) easily foams in a bubble/foam-fractionation column using air as the carrier gas. Control of that foam fractionation process is readily achieved by adjusting two variables: bulk solution pH and gas superficial velocity. Varying these parameters has an important role in the recovery of sporamin in the foam. Changes in the pH of the bulk solution can control the partitioning of sporamin in the foam phase from that in the bulk phase. A change in pH will also affect the amount of foam generated. The pH varied between 2.0 and 10.0 and the air superficial velocities (V0) ranged between 1.5 and 4.3 cm/s. It was observed in these ranges that, as the pH increased, the total foamate volume decreased, but the foamate protein (mainly sporamin) concentration increased. On the other hand, the total foamate volume increased significantly as the air superficial velocity increased, but the foamate concentration decreased slightly. The minimum residual protein concentration occurred at pH 3.0 and V0 = 1.5 cm/s. On the other hand, the maximum protein mass recovery occurred at pH 3.0 and at V0 = 4.3 cm/s.

Index Entries

Batch foam fractionation bioseparation protein separation sweet potato sweet potato proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kays, S. J. (1992), in Sweet Potato Technology for the 21st Century, W. A. Hill and P. A. Loretan (eds.), Tuskegee University, Tuskegee, AL, pp. 201–261.Google Scholar
  2. 2.
    Collins, W. W. and Walter, Jr., W. M. (1985), in Sweet Potato Products: A Natural Resource for the Tropics, Bouwkamp, J. C., ed, CRC, Boca Raton FL, pp. 153–173.Google Scholar
  3. 3.
    Osujui, G. O. and Cuero, R. G. (1992), in Sweet Potato Technology for the 21st Century, W. A. Hill and P. A. Loretan (eds.), Tuskegee University, Tuskegee, AL, pp. 78–86.Google Scholar
  4. 4.
    Nakamura, K. (1992), in Sweet Potato Technology for 21st Century, W. A. Hill and P. A. Loretan (eds.), Tuskegee University, Tuskegee, AL, pp. 21–25.Google Scholar
  5. 5.
    Prakash, C. S. and Varadarajan, U. (1992), in Sweet Potato Technology for the 21st Century, W. A. Hill and P. A. Loretan (eds.), Tuskegee University, Tuskegee, AL, pp. 27–37.Google Scholar
  6. 6.
    Bin, W., Lu, J., Stevens, C. and Khan, V. (1995), Tuskegee Horizons, 6, 19.Google Scholar
  7. 7.
    Harvey, P. J. and Boulter, D. (1993), Phytochemistry 22, 1687–1693.CrossRefGoogle Scholar
  8. 8.
    Maeshima, M., Sasaki, T., and Asahi, T. (1985), Phytochemistry 24, 1899–1902.CrossRefGoogle Scholar
  9. 9.
    Adamson, A. W. (1990), Physical Chemistry of Surfaces, 5th ed., John Wiley New York, pp. 525–553.Google Scholar
  10. 10.
    Lemlich, R. (1972), Adsorptive Bubble Separation Techniques, Academic, New York, pp. 133–143.CrossRefGoogle Scholar
  11. 11.
    Prokop, A. and Tanner, R. D. (1993), Starch/Stärke, 45, 150–154.CrossRefGoogle Scholar
  12. 12.
    Montero, G. A. Kirschner, T. F., and Tanner, R. D. (1993), Appl. Biochem. Biotechnol. 39/40, 467–475.CrossRefGoogle Scholar
  13. 13.
    Kays, S. J. (1985), Sweet Potato Products: A Natural Resource for the Tropics, Bouwkamp, J. C., ed, CRC, Boca Raton FL, pp. 153–173.Google Scholar
  14. 14.
    Bradford, M. M. (1972), Anal Biochem. 72, 248–254.CrossRefGoogle Scholar
  15. 15.
    Miller, G. L. (1959), Anal Chem. 31, 426–428.CrossRefGoogle Scholar
  16. 16.
    Laemmli, U. K. (1970), Anal. Biochem. 72, 680–685.Google Scholar
  17. 17.
    Hames, B. D. and Rickwood, D. (1990), Gel Electrophoresis of Proteins, Oxford University Press, Oxford, pp. 53–55.Google Scholar
  18. 18.
    Fasman, G. D. (1989), Practical Handbook of Biochemistry and Molecular Biology, CRC Boston, p. 173.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Samuel Ko
    • 1
  • Veara Loha
    • 1
  • Aleš Prokop
    • 1
  • Robert D. Tanner
    • 1
  1. 1.Department of Chemical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations