Factors that Affect the Biosynthesis of Xylitol by Xylose-Fermenting Yeasts A Review

  • Silvio S. Silva
  • Maria G. A. Felipe
  • Ismael M. Mancilha
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


Xylitol is a sweetener with important technological properties like an-ticariogenicity, low caloric value, and negative dissolution heat. Because it can be used successfully in food formulations and pharmaceutical industries, its production is in great demand.

Xylitol can be obtained by microbiological process, since many yeasts and filamentous fungi synthesize the xylose reductase enzyme, which catalyses the xylose reduction into xylitol as the first step in the xylose metabolism. The xylitol production by biotechnological means has several economic advantages in comparison with the conventional process based on the chemical reduction of xylose. The efficiency and the productivity of this fermentation chiefly depends upon the microorganism and the process conditions employed. In this mini-review, the most significant upstream parameters on xylitol production by biotechnological process are described.

Index Entries

Xylose fermentation xylitol xylose-fermenting yeasts hemicellulosic hydrolysates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, J. A. (1976), Adv. Carbohyd. Chem. Biochem. 32, 125–234.CrossRefGoogle Scholar
  2. 2.
    Jeffries, T. W. (1983), Adv. Biochem. Eng./Biotechnol. 27, 1–32.CrossRefGoogle Scholar
  3. 3.
    Schneider, H., Mahmourides, G., Labelle, J. L., Lee, H., Maki, N., and Mc Neill, H. J. (1985), Biotechnol. Lett. 7(53), 61–64.Google Scholar
  4. 4.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988), J. Ferment. Technol. 66(4), 417–422.CrossRefGoogle Scholar
  5. 5.
    Ligthelm, M. E., Prior, B. A., and du Preez, J. C. (1988), Appl. Microbiol. Biotechnol. 28(1), 63–68.Google Scholar
  6. 6.
    Roseiro, J. C, Peito, M. A., Gírio, F. M., and AmaraL-Collaço (1991), Arch. Microbiol. 156, 484–490.Google Scholar
  7. 7.
    Mayerhoff, Z. D. L., Roberto, I. C, and Silva, S. S. (1997), Biotechnol. Lett. 19(5), 407–409.CrossRefGoogle Scholar
  8. 8.
    Hahn-Hägerdal, B., Jínsson, B., and Vogel, E. L. (1985), Appl. Microbiol. Biotechnol. 21, 173–175.CrossRefGoogle Scholar
  9. 9.
    Barbosa, M. F. S., Medeiros, M. B., Mancilha, L M., Scheneider, H., and Lee, H. (1988), J. Ind. Microbiol. 3, 241–251.CrossRefGoogle Scholar
  10. 10.
    Pfeifer, M. J., Silva, S. S., Felipe, M. G. A., Roberto, I. C., and Mancilha, I. M. (1996), Appl. Biochem. Biotechnol. 57/58, 423–430.CrossRefGoogle Scholar
  11. 11.
    Gong, C. H., Glaypool, T. A., Mccracken, L. D., Maun, C. M., Ueng, P. P., and Tsao, G. T. (1983), Biotechnol. Bioeng. 25, 85–102.CrossRefGoogle Scholar
  12. 12.
    Hahn-Hagerdal, B., Jeppson, H., Skoog, K., and Prior, B. A. (1994), Enzyme Microb. Technol. 16, 933–943.CrossRefGoogle Scholar
  13. 13.
    Taylor, K. B., Beck, M. J., Huang, D. H., and Sakai, T. T. (1990), J. Ind. Microbiol. 6, 29–41.CrossRefGoogle Scholar
  14. 14.
    Bolen, P. L., and Detroy, R. W. (1985), Biotechnol. Bioeng. 27, 302–307.CrossRefGoogle Scholar
  15. 15.
    Alexander, N. J. (1985), Biotechnol. Bioeng. 27, 1739–1744.CrossRefGoogle Scholar
  16. 16.
    Silva, S. S., Vitolo, M., Pessoa-Junior, A., and Felipe, M. G. A. (1996), J. Basic Microbiol. 36(3), 187–191.CrossRefGoogle Scholar
  17. 17.
    Skoog, K., and Hahn-Hägerdal, B. (1988), Enzyme Microb. Technol. 10(2), 66–80.CrossRefGoogle Scholar
  18. 18.
    Du Preez, J. C., Van Driessel, B., and Prior, B. A. (1989), Biotechnol. Lett. 11(2), 131–136.CrossRefGoogle Scholar
  19. 19.
    Gírio, F. M., Peito, A. M., and Amaral-Collaço, M. T. (1989), Appl. Microbiol. Biotechnol 32, 199–204.CrossRefGoogle Scholar
  20. 20.
    Prior, B. A., Kilian, S. G., and Du Preez, J. C. (1989), Process Biochem. 21–32.Google Scholar
  21. 21.
    Bicho, P. A., Runnals, P. L., Cunningham, J. D., and Lee, H. (1988), Appl. Environ. Microbiol. 54(1), 50–54.Google Scholar
  22. 22.
    Onisch, O., and Suzuki, T. (1966), Agricultural Biol. Giern. 30(11), 1139–1144.CrossRefGoogle Scholar
  23. 23.
    Gong, C., Chen, L. F., and Tsao, G. T. (1981), Biotechnol. Lett. 3(3), 125–130.CrossRefGoogle Scholar
  24. 24.
    Meyral, V., Delgenes, J. P., Molleta, R., and Navarro, J. M. (1991), Biotechnol. Lett. 13(4), 281–286.CrossRefGoogle Scholar
  25. 25.
    Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., and Delgenes, J. M. (1993), Curr. Microbiol. 27, 191–197.CrossRefGoogle Scholar
  26. 26.
    Silva, S. S. and Afschar, A. S. (1994), Bioprocess Eng. 11, 129–134.Google Scholar
  27. 27.
    Slininger, P. J., Bothast, R. J., Ladisch, M. R., and Okos, M. R. (1990), Biotechnol. Bioeng. 35, 727–731.CrossRefGoogle Scholar
  28. 28.
    Silva, S. S., Quesada-Chanto, A., and Vitolo, M. (1997), Zeitschrift fur Naturforschung, 52 C, 359–363.Google Scholar
  29. 29.
    Silva, S. S., Roberto, I. C, Felipe, M. G. A., and Mancilha, I. M. (1996), Process Biochem. 31(6), 549–553.CrossRefGoogle Scholar
  30. 30.
    Furlan, S. A., Bouilloud, P., Strehaino, P., and Riba, J. P. (1991), Biotechnol. Lett. 40, 203–206.CrossRefGoogle Scholar
  31. 31.
    Felipe, M. G., Vitolo, M., and Mancilha, I. M. (1996), Acta Biotechnol. 16(1), 73–79.CrossRefGoogle Scholar
  32. 32.
    Silva, S. S., Ribeiro, J. D., Vitolo, M., and Felipe, M. G. A. (1997), Appl. Biochem. Biotechnol. 63-65, 557–563.CrossRefGoogle Scholar
  33. 33.
    Slininger, P. J., Bothast, R. J., and Okos, M. R. (1985), Biotechnol. Lett. 7(6), 431–436.CrossRefGoogle Scholar
  34. 34.
    Ojamo, H., Ylinen, L., and Linko, M. (1988), Process for the preparation of xylitol from xylose by cultivating Candida guilliermondii US Patent WO 88/05467.Google Scholar
  35. 35.
    Jeffries, T. W., Fady, J. H., and Lightfoot, E. (1985), Biotechnol. Bioeng. 27, 171–176.CrossRefGoogle Scholar
  36. 36.
    du Preez, J. C, Bosch, M., and Prior, B. (1986), Enzyme Microb. Technol. 8, 360–364.CrossRefGoogle Scholar
  37. 37.
    Kastner, J. R. and Roberts, R. S. (1990), Biotechnol. Lett. 12(1), 57–60.CrossRefGoogle Scholar
  38. 38.
    Jones, R., and Greenfield, P. F. (1984), Process Biochem. 4, 48–60.Google Scholar
  39. 39.
    Roberto, I. C, Sato. S., and Mancilha, I. M. (1996), J. Ind. Microbiol. 16, 348–350.CrossRefGoogle Scholar
  40. 40.
    Molwitz, ML, Silva, S. S., Ribeiro, J. D., Felipe, M. G. A., Prata, A. M. R., and Mancilha, I. M. (1996), J. Bioscience 51C, 404–408.Google Scholar
  41. 41.
    Woods, M. A. and Millis, N. F. (1985), Biotechnol. Lett. 7(9), 679–682.CrossRefGoogle Scholar
  42. 42.
    Sirisansaneeyakul, S., Staniszewski, M., and Rizzi, M. (1995), J. Fermentation Bioeng. 80(6), 565–570.CrossRefGoogle Scholar
  43. 43.
    Felipe, M. G. A., Vitolo, M., Mancilha, I. M., and Silva, S. S. (1997), J. Ind. Microbiol. Biotechnol. 18, 251–254.CrossRefGoogle Scholar
  44. 44.
    Mes-Hartree, M., and Saddler, J. N. (1983), Biotechnol. Lett. 5(8), 531–536.CrossRefGoogle Scholar
  45. 45.
    Alves, L. A. (1997), MSc. Thesis. Faculdade de Engenharia Quimica de Lorena, Lorena, São Paulo, Brasil.Google Scholar
  46. 46.
    Silva, S. S., Queiroz, M. A., Felipe, M. G. A., Roberto, I. C., and Mancilha, I. M. (1991), Symposium on Biotechnology for Fuels and Chemicals, Book of Abstracts. NREL, Golden, CO p. 44.Google Scholar
  47. 47.
    Felipe, M. G. A., Vieira, D. C, Vitolo, M., Silva, S. S., Roberto, I. C, and Mancilha, I. M. (1995), J. Basic. Microbiol. 35(3), 171–177.CrossRefGoogle Scholar
  48. 48.
    Felipe, M. G. A., Vitolo, M., Mancilha, I. M., and Silva, S. S. (1997), Biomass Bioenergy, 13(1/2) 11–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Silvio S. Silva
    • 1
  • Maria G. A. Felipe
    • 1
  • Ismael M. Mancilha
    • 1
  1. 1.Department of BiotechnologyFaculty of Chemical Engineering of LorenaLorena, São PauloBrazil

Personalised recommendations