Production of a Novel Pyranose 2-Oxidase by Basidiomycete Trametes multicolor

  • Christian Leitner
  • Dietmar Haltrich
  • Bernd Nidetzky
  • Klaus D. Kulbe
  • Hansjörg Prillinger
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

During a screening for the enzyme pyranose 2-oxidase (P2O) which has a great potential as a biocatalyst for carbohydrate transformations, Trametes multicolor was identified as a promising, not-yet-described producer of this particular enzyme activity. Furthermore, it was found in this screening that the enzyme frequently occurs inbasidiomycetes. Intracellular P2O was produced in a growth-associated manner by T. multicolor during growth on various substrates, including mono-, oligo-, and polysaccharides. Highest levels of this enzyme activity were formed when lactose or whey were used as substrates. Peptones from casein and other casein hydrolysates were found to be the most favorable nitrogen sources for the formation of P2O. By applying an appropriate feeding strategy for the substrate lactose, which ensured an elevated concentration of the carbon source during the entire cultivation, levels of P2O activity obtained in laboratory fermentations, as well as the productivity of these bioprocess experiments, could be enhanced more than 2.5-fold.

Index Entries

Trametes multicolor pyranose 2-oxidase screening culture medium development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janssen, F. W. and Ruelius, H. W. (1975), Methods Enzymol. 41, 170–173.CrossRefGoogle Scholar
  2. 2.
    Volc, J., Sedmera, P., and Musílek, V. (1978), Folia Microbiol. 23, 292–298.CrossRefGoogle Scholar
  3. 3.
    Machida, Y., and Nakanishi, T. (1984), Agric. Biol. Chem. 48, 2463–2470.CrossRefGoogle Scholar
  4. 4.
    Volc, J., and Eriksson, K.-E. (1988), Methods Enzymol 161, 316–322.CrossRefGoogle Scholar
  5. 5.
    Izumi, Y., Furuya, Y., and Yamada, H. (1990), Agric. Biol Chem. 54, 1393–1399.CrossRefGoogle Scholar
  6. 6.
    Danneel, H.-J., Rössner, E., Zeeck, A., and Giffhorn, F. (1993), Eur. J. Biochem. 214, 795–802.CrossRefGoogle Scholar
  7. 7.
    Daniel, G., Volc, J., and Kubátová, E. (1994), Appl. Environ. Microbiol. 60, 2524–2532.Google Scholar
  8. 8.
    Daniel, G. (1994), FEMS Microbiol Rev. 13, 199–233.CrossRefGoogle Scholar
  9. 9.
    Baute, M.-A., Baute, R., Deffieux, G., and Filleau, M.-J. (1977), Phytochemistry 16, 1895–1897.CrossRefGoogle Scholar
  10. 10.
    Baute, M.-A. and Baute, R. (1984), Phytochemistry 23, 271–274.CrossRefGoogle Scholar
  11. 11.
    Volc, J., Kubátová, E., Sedmera, P., Daniel, G., and Gabriel, J. (1991), Arch. Microbiol. 156, 297–301.CrossRefGoogle Scholar
  12. 12.
    Gabriel, J., Volc, J., Sedmera, P., Daniel, G., and Kubátová, E. (1993), Arch. Microbiol. 160, 27–34.Google Scholar
  13. 13.
    Röper, H. (1991), in Carbohydrates as Organic Raw Materials, Lichtenthaler, F. W., ed., VCH, Weinheim, Germany, pp. 267–288.Google Scholar
  14. 14.
    Crueger, A. and Crueger, W. (1990), in Microbial Enzymes and Biotechnology, Fogarty, W. M. and Kelly, C. T., eds., Elsevier Applied Science, London, pp. 177–226.CrossRefGoogle Scholar
  15. 15.
    Huwig, A., Danneel, H.-J., and Giffhorn, F. (1994), J. Biotechnol. 32, 309–315.CrossRefGoogle Scholar
  16. 16.
    Neidleman, S. L., Amon, W. F., and Geigert, J. (1981), U.S. Patent 4246347.Google Scholar
  17. 17.
    Liu, T.-N. E., Wolf, B., Geigert, J., Neidleman, S. L., Chin, J. D., and Hirano, D. S. (1983), Carbohydr. Res. 113, 151–157.CrossRefGoogle Scholar
  18. 18.
    Geigert, J., Neidleman, S. L., and Hirano, D. S. (1983), Carbohydr. Res. 113, 159–162.CrossRefGoogle Scholar
  19. 19.
    Danneel, H.-J., Ullrich, M., and Giffhorn, F. (1992), Enzyme Microb. Technol. 14, 898–903.CrossRefGoogle Scholar
  20. 20.
    Petroski, R. J., Peczynska-Czoch, W., and Rosazza, J. P. (1980), Appl. Environ. Microbiol. 40, 1003–1006.Google Scholar
  21. 21.
    Bradford, M. M. (1976), Anal Biochem. 72, 248–254.CrossRefGoogle Scholar
  22. 22.
    Furuya, Y., Yamada, H., and Izumi, Y. (1993), J. Ferment. Bioeng. 76, 532–534.CrossRefGoogle Scholar
  23. 23.
    Gancedo, J. M., Gancedo, C., and Asensio, C. (1967), Arch. Biochem. Biophys. 119, 588–590.CrossRefGoogle Scholar
  24. 24.
    Volc, J., Denisova, N. P., Nerud, F., and Musílek, V. (1985), Folia Microbiol. 30, 141–147.CrossRefGoogle Scholar
  25. 25.
    Eriksson, K.-E., Pettersson, B., Volc, J., and Musilek, V. (1986), Appl. Microbiol Biotechnol. 23, 257–262.CrossRefGoogle Scholar
  26. 26.
    Ruelius, H. W., Kerwin, R. ML, and Janssen, F. W. (1968), Biochim. Biophys. Acta 167, 493–500.CrossRefGoogle Scholar
  27. 27.
    Thomas, C. R. (1990), in Chemical Engineering Problems in Biotechnology, Winkler, M. A., ed., Elsevier Applied Science, London, pp. 23–93.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Christian Leitner
    • 1
  • Dietmar Haltrich
    • 1
  • Bernd Nidetzky
    • 1
  • Klaus D. Kulbe
    • 1
  • Hansjörg Prillinger
    • 2
  1. 1.Abteilung Biochemische Technologie, Institut für LebensmitteltechnologieUniversität für Bodenkultur BOKU Wien (University of Agricultural Sciences Vienna)WienAustria
  2. 2.lnstitut für Angewandte MikrobiologieUniversität für Bodenkultur BOKU Wien (University of Agricultural Sciences Vienna)WienAustria

Personalised recommendations