Disorders Caused by Mutations of the Lutropin/ Choriogonadotropin Receptor Gene

  • Andrew Shenker
Part of the Contemporary Endocrinology book series (COE, volume 6)

Abstract

The human receptor for lutropin and chorionic gonadotropin (LHR) plays a key role in normal and abnormal reproductive physiology (1–3). In males lutropin luteinizing hormone (LH) regulates the development and function of Leydig cells. Testosterone secreted by the Leydig cells is obligatory for the development of male internal and external genitalia, and for the establishment of secondary sexual characteristics during puberty. In women, LH acts on the theca cells to produce androgen precursors necessary for estrogen synthesis, and on the ovarian follicles to promote ovulation, subsequent corpus luteum formation, and progesterone secretion. Chorionic gonadotropin produced by the placenta acts on the corpus luteum and promotes development of the fetal testes in the first trimester of pregnancy.

Keywords

Dopamine Adenoma Proline Trypsin Androgen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Leung P, Steele GL. Intracellular signaling in the gonads. Endocr Rev 1992;13:476–498.PubMedGoogle Scholar
  2. 2.
    Segaloff DL, Ascoli M. The lutropin/choriogonadotropin receptor … 4 years later. Endocr Rev 1993;14:324–347.PubMedGoogle Scholar
  3. 3.
    Themmen APN, Brunner HG. Luteinizing hormone receptor mutations and sex differentiation. Eur J Endocrinol 1996;134:533–540.PubMedCrossRefGoogle Scholar
  4. 4.
    Moyle WR, Campbell RK, Rao SNV, et al. Model of human chorionic gonadotropin and lutropin receptor interaction that explains signal transduction of the glycoprotein hormones. J Biol Chem 1995;270:20020–20032.PubMedCrossRefGoogle Scholar
  5. 5.
    Jiang X, Dreano M, Buckler DR, et al. Structural predictions for the ligand-binding region of glycoprotein hormone receptors and the nature of hormone-receptor interactions. Structure 1995;3:1341–1353.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhowmick N, Huang J, Puett D, Isaacs NW, Lapthorn AJ. Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modeling. Mol Endocrinol 1996;10:1147–1159.PubMedCrossRefGoogle Scholar
  7. 7.
    Couture L, Naharisoa H, Grebert D, et al. Peptide and immunological mapping of the ectodomain of the porcine LH receptor. J Mol Endocrinol 1996;16:15–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opinion Cell Biol 1994;6:180–190.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoflack J, Hibert MF, Trumpp-Kallmeyer S, Bidart J-M. Three-dimensional models of gonado-thyrotropin hormone receptor transmembrane domain. Drug Des Discov 1993;10:157–171.PubMedGoogle Scholar
  10. 10.
    van Sande J, Parma J, Tonacchera M, Swillens S, Dumont J, Vassart G. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 1995;80:2577–2585.PubMedCrossRefGoogle Scholar
  11. 11.
    van Sande J, Massart C, Costagliola S, et al. Specific activation of the thyrotropin receptor by trypsin. Mol Cell Endocrinol 1996;119:161–168.PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz T.W, Rosenkilde MM. Is there a “lock” for all agonist “keys” in 7TM receptors? Trends Pharmacol Sci 1996;17:213–216.PubMedCrossRefGoogle Scholar
  13. 13.
    Ji I, Zeng H, Ji TH. Receptor activation of and signal generation by the lutropin/choriogonadotropin receptor. Cooperation of Asp397 of the receptor and αLys91 of the hormone. J Biol Chem 1993;268:22971–22974.PubMedGoogle Scholar
  14. 14.
    Huang J, Puett D. Identification of two amino acid residues on the extracellular domain of the lutropin/choriogonadotropin receptor important for signaling. J Biol Chem 1995;270:30023–30028.PubMedCrossRefGoogle Scholar
  15. 15.
    Fernandez LM, Puett D. Lys583 in the third extracellular loop of the lutropin/choriogonadotropin receptor is critical for signaling. J Biol Chem 1996;271:925–930.PubMedCrossRefGoogle Scholar
  16. 16.
    Gilchrist RL, Ryu K-S, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem 1996;271:19283–19287.PubMedCrossRefGoogle Scholar
  17. 17.
    Shenker A. G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Metab 1995;9:427–451.PubMedCrossRefGoogle Scholar
  18. 18.
    van Rhee AM, Jacobson KA. Molecular architecture of G protein-coupled receptors. Drug Dev Res 1996;37:1–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Hibert MF, Trumpp-Kallmeyer S, Hoflack J, Bruinvels A. This is not a G protein-coupled receptor. Trends Pharmacol Sci 1993;14:7–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang D, Weinstein H. Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands. J Med Chem 1993;36:934–938.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin Z, Shenker A, Pearlstein R. A model of the lutropin/choriogonadotropin receptor: insights into the structural and functional effects of constitutively activating mutations. Protein Eng, 1997;10:501–510.PubMedCrossRefGoogle Scholar
  22. 22.
    Gudermann T, Birnbaumer M, Birnbaumer L. Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization: studies with the cloned murine luteinizing hormone receptor expressed in L cells. J Biol Chem 1992;267:4479–4488.PubMedGoogle Scholar
  23. 23.
    Herrlich A, Kühn B, Grosse R, Schmid A, Schultz G, Gudermann T. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem 1996;271:16764–16772.PubMedCrossRefGoogle Scholar
  24. 24.
    Stone RK. Extraordinary precocity in the development of the male sexual organs and muscular system in a child four years old. Am J Med Sci 1852;24:561–564.Google Scholar
  25. 25.
    Rosenthal SM, Grumbach MM, Kaplan SL. Gonadotropin-independent familial sexual precocity with premature Leydig and germinal cell maturation (familial testotoxicosis): effects of a potent luteinizing hormone-releasing factor agonist and medroxyprogesterone acetate therapy in four cases. J Clin Endocrinol Metab 1983;57:571–578.PubMedCrossRefGoogle Scholar
  26. 26.
    Holland FJ. Gonadotropin-independent precocious puberty. Endocrinol Metab Clin North Am 1991;20:191–210.PubMedGoogle Scholar
  27. 27.
    Laue L, Jones J, Barnes KM, Cutler GB Jr. Treatment of familial male precocious puberty with spironolactone, testolactone, and deslorelin. J Clin Endocrinol Metab 1993;76:151–155.PubMedCrossRefGoogle Scholar
  28. 28.
    Manasco PK, Girton ME, Diggs RL, et al. A novel testis-stimulating factor in familial male precocious puberty. N Engl J Med 1991;324:227–231.PubMedCrossRefGoogle Scholar
  29. 29.
    Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site: evidence for a region which constrains receptor activation. J Biol Chem 1992;267:1430–1433.PubMedGoogle Scholar
  30. 30.
    Robbins LS, Nadeau JH, Johnson KR, et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993;72:827–834.PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD. Constitutively active mutants of rhodopsin. Neuron 1992;9:719–725.PubMedCrossRefGoogle Scholar
  32. 32.
    Shenker A, Laue L, Kosugi S, Merendino JJ Jr, Minegishi T, Cutler GB Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993;365:652–654.PubMedCrossRefGoogle Scholar
  33. 33.
    Kremer H, Mariman E, Otten BJ, et al. Cosegregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum Mol Genet 1993;2:1779–1783.PubMedCrossRefGoogle Scholar
  34. 34.
    Yano K, Hidaka A, Saji M, et al. A sporadic case of male-limited precocious puberty has the same constitutively activating point mutation in luteinizing hormone/choriogonadotropin receptor gene as familial cases. J Clin Endocrinol Metab 1994;79:1818–1823.PubMedCrossRefGoogle Scholar
  35. 35.
    Kosugi S, Van Dop C, Geffner ME, et al. Characterization of heterozygous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum Mol Genet 1995;4:183–188.PubMedCrossRefGoogle Scholar
  36. 36.
    Laue L, Chan W-Y, Hsueh AJW, et al. Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc Natl Acad Sci USA 1995;92:1906–1910.PubMedCrossRefGoogle Scholar
  37. 37.
    Kawate N, Kletter GB, Wilson BE, Netzloff ML, Menon KMJ. Identification of constitutively activating mutation of the luteinising hormone receptor in a family with male limited gonadotropin independent precocious puberty (testotoxicosis). J Med Genet 1995;32:553–554.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenthal IM, Refetoff S, Rich B, et al. Response to challenge with gonadotropin releasing hormone agonist in a mother and her two sons with a constitutively activating mutation of the luteinizing hormone receptor. J Clin Endocrinol Metab 1996;81:3802–3806.PubMedCrossRefGoogle Scholar
  39. 39.
    Kraaij R, Post M, Kremer H, et al. A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty. J Clin Endocrinol Metab 1995;80:3168–3172.PubMedCrossRefGoogle Scholar
  40. 40.
    Evans BAJ, Bowen DJ, Smith PJ, Clayton PE, Gregory JW. A new point mutation in the luteinising hormone receptor gene in familial and sporadic male limited precocious puberty: genotype does not always correlate with phenotype. J Med Genet 1996;33:143–147.PubMedCrossRefGoogle Scholar
  41. 41.
    Yano K, Kohn LD, Saji M, Kataoka N, Okuno A, Cutler GB Jr. A case of male-limited precocious puberty caused by a point mutation in the second transmembrane domain of the luteinizing hormone choriogonadotropin receptor gene. Biochem Biophys Res Commun 1996;220:1036–1042.PubMedCrossRefGoogle Scholar
  42. 42.
    Latronico AC, Anasti J, Arnhold IJ, et al. A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin-independent precocious puberty. J Clin Endocrinol Metab 1995;80:2490–2494.PubMedCrossRefGoogle Scholar
  43. 43.
    Yano K, Saji M, Hidaka A, et al. A new constitutively activating point mutation in the luteinizing hormone/choriogonadotropin receptor gene in cases of male-limited precocious puberty. J Clin Endocrinol Metab 1995;80:1162–1168.PubMedCrossRefGoogle Scholar
  44. 44.
    Laue L, Wu SM, Kudo M, et al. Heterogeneity of activating mutations of the human luteinizing hormone receptor in male-limited precocious puberty. Biochem Mol Med 1996;58:192–198.PubMedCrossRefGoogle Scholar
  45. 45.
    Müller J, Kosugi S, Shenker A. A severe, non-familial case of testotoxicosis associated with a new mutation (Asp578 to Tyr) of the lutropin receptor (LHR) gene. Horm Res 1995;41(Suppl):113.Google Scholar
  46. 46.
    Kosugi S, Mori T, Shenker A. The role of Aspi578 in maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. J Biol Chem 1996;271:31813–31817.PubMedCrossRefGoogle Scholar
  47. 47.
    Nothacker H-P, Grimmelikhuijzen CJP. Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals. Biochem Biophys Res Commun 1993;197:1062–1069.PubMedCrossRefGoogle Scholar
  48. 48.
    Tensen C, van Kesteren ER, Planta RJ, et al. A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci USA 1994;91:4816–4820.PubMedCrossRefGoogle Scholar
  49. 49.
    Tonacchera M, Van Sande J, Cetani F, et al. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia. J Clin Endocrinol Metab 1996;81:547–554.PubMedCrossRefGoogle Scholar
  50. 50.
    Cetani F, Tonacchera M, Vassart G. Differential effects of NaCl concentration on the constitutive activity of the thyrotropin and luteinizing hormone/chorionic gonadotropin receptors. FEBS Lett 1996;378:27–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Sklar CA, Conte FA, Kaplan SL, Grumbach MM. Human chorionic gonadotropin-secreting pineal tumor: relation to pathogenesis and sex limitation of sexual precocity. J Clin Endocrinol Metab 1981;53:656–660.PubMedCrossRefGoogle Scholar
  52. 52.
    Clark PA, Clarke WL. Testotoxicosis: an unusual presentation and novel gene mutation. Clin Pediatr 1995;34:271–274.CrossRefGoogle Scholar
  53. 53.
    Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Dryja TP. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am J Ophthalmol 1991;111:614–623.PubMedGoogle Scholar
  54. 54.
    Dryja TP, Berson EL, Rao VR, Oprian DD. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 1993;4:280–283.PubMedCrossRefGoogle Scholar
  55. 55.
    Rao VR, Cohen GB, Oprian DD. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994;367:639–642.PubMedCrossRefGoogle Scholar
  56. 56.
    Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J Biol Chem 1993;268:4625–4636.PubMedGoogle Scholar
  57. 57.
    Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S. Constitutively active mutants of the αlB-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 1996;15:3566–3578.PubMedGoogle Scholar
  58. 58.
    Porter JE, Hwa J, Perez DM. Activation of the αlb-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J Biol Chem 1996;271:28318–28323.PubMedCrossRefGoogle Scholar
  59. 59.
    Neitz M, Neitz J, Jacobs GH. Spectral tuning of pigments underlying red-green color vision. Science 1991;252:971–974.PubMedCrossRefGoogle Scholar
  60. 60.
    Han M, Lin SW, Minkova M, Smith SO, Sakmar TP. Functional helix-helix interactions in rhodopsin: replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. J Biol Chem 1996;271:32337–32342.PubMedCrossRefGoogle Scholar
  61. 61.
    Lemmon MA, Engelman DM. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys 1994;27:157–218.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee GF, Dutton DP, Hazelbauer GL. Identification of functionally important helical faces in trans-membrane segments by scanning mutagenesis. Proc Natl Acad Sci USA 1995;92:5416–5420.PubMedCrossRefGoogle Scholar
  63. 63.
    Kudo M, Osuga Y, Kobilka BK, Hsueh AJW. Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop. J Biol Chem 1996;271:22470–22478.PubMedCrossRefGoogle Scholar
  64. 64.
    Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Light activation of rhodopsin requires rigid body motion of transmembrane helices. Science 1996;274:768–770.PubMedCrossRefGoogle Scholar
  65. 65.
    Blüml K, Mutschler E, Wess J. Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J Biol Chem 1994;269:18870–18876.PubMedGoogle Scholar
  66. 66.
    Högger P, Shockley MS, Lameh J, Sadée W. Activating and inactivating mutations in N-and C-terminal i3 loop junctions of muscarinic acetylcholine Hml receptors. J Biol Chem 1995;270:7405–7410.PubMedCrossRefGoogle Scholar
  67. 67.
    Spalding TA, Burstein ES, Brauner-Osborne H, Hill-Eubanks D, Brann MR. Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J Pharmacol Exp Ther 1995;275:1274–1279.PubMedGoogle Scholar
  68. 68.
    Liu J, Blin N, Conklin BR, Wess J. Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis. J Biol Chem 1996;271:6172–6178.PubMedCrossRefGoogle Scholar
  69. 69.
    Parent J-L, Le Gouill C, de Brum-Fernandes AJ, Rola-Pleszczynski M, Stanková J. Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J Biol Chem 1996;271:7949–7955.PubMedCrossRefGoogle Scholar
  70. 70.
    Cho W, Taylor LP, Akil H. Mutagenesis of residues adjacent to the transmembrane prolines alters Dl dopamine receptor binding and signal transduction. Mol Pharmacol 1996;50:1338–1345.PubMedGoogle Scholar
  71. 71.
    Schipani E, Langman CB, Parfitt AM, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med 1996;335:736–738.CrossRefGoogle Scholar
  72. 72.
    Boone C, Davis NG, Sprague GF Jr. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci USA 1993;90:9921–9925.PubMedCrossRefGoogle Scholar
  73. 73.
    Konopka JB, Margarit SM, Dube P. Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G-protein-coupled α-factor receptor. Proc Natl Acad Sci USA 1996;93:6764–6769.PubMedCrossRefGoogle Scholar
  74. 74.
    Subramaniam S, Gerstein M, Oesterhelt D, Henderson R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 1993;12:1–8.PubMedGoogle Scholar
  75. 75.
    Brown LS, Várö G, Needleman R, Lanyi JK. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle. Biophys J 1995;69:2103–2111.PubMedCrossRefGoogle Scholar
  76. 76.
    Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR. Rhodopsin activation blocked by metalion-binding sites linking transmembrane helices C and F. Nature 1996;383:347–350.PubMedCrossRefGoogle Scholar
  77. 77.
    Grumbach MM, Conte FA. Disorders of sex differentiation. In: Wilson JD, Foster DW eds. Williams Textbook of Endocrinology. W.B. Saunders, Philadelphia, 1992, pp. 853–951.Google Scholar
  78. 78.
    Kremer H, Kraaij R, Toledo SPA, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet 1995;9:160–164.PubMedCrossRefGoogle Scholar
  79. 79.
    Toledo SPA, Brunner HG, Kraaij R, et al. An inactivating mutation of the luteinizing hormone receptor causes amenorrhea in a 46,XX female. J Clin Endocrinol Metab 1996;81:3850–3854.PubMedCrossRefGoogle Scholar
  80. 80.
    Laue L, Wu S-M, Kudo M, et al. A nonsense mutation of the human luteinizing hormone receptor gene in Leydig cell hypoplasia. Hum Mol Genet 1995;4:1429–1433.PubMedCrossRefGoogle Scholar
  81. 81.
    Latronico AC, Anasti J, Arnhold IJP, et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med 1996;334:507–512.PubMedCrossRefGoogle Scholar
  82. 82.
    Laue LL, Wu S-M Kudo, M, et al. Compound heterozygous mutations of the luteinizing hormone receptor gene in Leydig cell hypoplasia. Mol Endocrinol 1996;10:987–997PubMedCrossRefGoogle Scholar
  83. 83.
    Aittomaki K, Lucena JL, Pakarinen P, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995;82:959–968.PubMedCrossRefGoogle Scholar
  84. 84.
    Fernandez LM, Puett D. Identification of amino acid residues in transmembrane helices VI and VII of the lutropin/choriogonadotropin receptor involved in signaling. Biochemistry 1996;35:3986–3993.PubMedCrossRefGoogle Scholar
  85. 85.
    Hirsch B, Kudo M, Maro F, Conti M, Hsueh AJW. The C-terminal third of the human luteinizing hormone (LH) receptor is important for inositol phosphate release: analysis using chimeric human LH/follicle-stimulating hormone receptors. Mol Endocrinol 1996;10:1127–1137.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Andrew Shenker

There are no affiliations available

Personalised recommendations