Advertisement

Background

  • Juan C. Migliore
Part of the Progress in Mathematics book series (PM, volume 165)

Abstract

Throughout this book, \(k = \bar k\) shall always denote an algebraically closed field. We will occasionally also require that it have characteristic zero, but we will always make it clear when we are making this assumption. All varieties and subschemes will be assumed to be projective. We shall denote by S the homogeneous polynomial ring k[X0,… X n ,] and we let ℙ n = ℙ n k = Proj S. Since S is a graded ring, it is the direct sum of its homogeneous components: S = ⊗d≥0 S d ,where S d is the vector space of homogeneous polynomials of degree d. We denote by m the maximal ideal, m=(X0,…,Xn,)⊂S.

Keywords

Exact Sequence Complete Intersection Short Exact Sequence Regular Sequence Hilbert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Juan C. Migliore
    • 1
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations