Torsion and Looping of the Cardiac Tube and Primitive Cardiac Segments. Anatomical Manifestations

  • Marίa V. de la Cruz
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Torsion of the cardiac tube takes place during the looping period of embryological development, i.e., between stage 9+HH of the straight tube heart (de la Cruz et al 1989, 1991) and stage 17HH, when septation begins (de la Cruz et al 1997). Septation will culminate with the formation of a four-chambered heart.


Chick Embryo Cephalic Region Arterial Pole Atrioventricular Groove Stage 12HH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin HS, Solursh M. 1989. Degradation of hyaluronic acids does not prevent looping of the mammalian heart “in situ”. Dev Biol 136:555–9.PubMedCrossRefGoogle Scholar
  2. Brown NA, Wolpert L. 1990. The development of handedness in left/right asymmetry. Development (Camb) 109:1–9.Google Scholar
  3. Butler JK. 1952. An experimental analysis of cardiac loop formation in the chick. M.A. Thesis. Austin: University of Texas.Google Scholar
  4. Castro-Quezada A, Nadal-Ginard B, de la Cruz MV. 1972. Experimental study of the formation of the bulboventricular loop in the chick. J Embryol Exp Morphol 27:623–37.PubMedGoogle Scholar
  5. Davis CL. 1927. Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Carnegie Contrib Embryol 19:245–84.Google Scholar
  6. de la Cruz MV, Castillo MM, Villavicencio L, Valencia A, Moreno-Rodriguez RA. 1997. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo heart. Anat Rec 247:512–20.PubMedCrossRefGoogle Scholar
  7. de la Cruz MV, Giménez-Ribotta M, Saravalli O, Cayré R. 1983. The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72.PubMedCrossRefGoogle Scholar
  8. de la Cruz MV, Muñoz-Armas S, Muñnoz-Castellanos L. 1972. Development of the Chick Heart. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  9. de la Cruz MV, Quero-Jiménez M, Arteaga M, Cayré R. 1982. Morphogénèse du septum interventriculaire. Coeur 13:443–8.Google Scholar
  10. de la Cruz MV, Sánchez-Gómez C, Arteaga M, Argüello C. 1977. Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661–86.PubMedGoogle Scholar
  11. de la Cruz MV, Sánchez-Gómez C, Cayré R. 1991. The developmental components of the ventricles: their significance in congenital cardiac malformations. Cardiol Young 1:123–8.Google Scholar
  12. de la Cruz MV, Sánchez-Gómez C, Palomino MA. 1989. The primitive cardiac regions in the straight tube heart (Stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–31.Google Scholar
  13. de la Cruz MV, Sánchez-Gómez C, Robledo Tovi JL. 1987. Experimental study of the development of the ventricular inlets in the chick embryo. Embryologische Hefte 1:25–37.Google Scholar
  14. DeVries PA, Saunders JB. 1962. Development of the ventricles and spiral outflow tract in the human heart. A contribution to the development of the human heart from age group IX to age group XV. Carnegie Contrib Embryol 256:89–114.Google Scholar
  15. Easton H, Veini M, Bellairs R. 1992. Cardiac looping in the chick embryo: the role of the posterior precardiac mesoderm. Anat Embryol 185:249–58.PubMedCrossRefGoogle Scholar
  16. George TR. 1993. Contribución de las poblaciones celulares adyacentes al extremo caudal del corazón en el tubo recto (ST9-HH) en el desarrollo del asa bulboventricular (ST12HH). Estudio experimental en el embrión del pollo. Thesis, México Universidad Nacional Autónoma de México.Google Scholar
  17. Grant RP. 1962. The embryology of ventricular flow pathways in man. Circulation 25:756–79.PubMedCrossRefGoogle Scholar
  18. His W. 1881. Mittheilungen zur Embryologie der Säugethiere und des Menschen. Arch Anat Entwickl Gesch JG 1881:303–29.Google Scholar
  19. Hoyle C, Brown NA, Wolpert L. 1992. Development of left/right handedness in the chick heart. Development (Camb) 115:1071–8.Google Scholar
  20. Itasaki N, Nakamura H, Sumida H, Yasuda M. 1991. Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat Embryol 183:29–39.PubMedCrossRefGoogle Scholar
  21. Kramer TC. 1942. The partitioning of the truncus and conus and the formation of the membranous portion of the inverventricular septum in the human heart. Am J Anat 71:343–70.CrossRefGoogle Scholar
  22. Lepori NG. 1967. Research on heart development in chick embryo under normal and experimental conditions. Monit Zool Ital 1:159–83.Google Scholar
  23. Manasek FJ. 1969. Embryonic development of the heart II. Formation of the epicardium. J Embryol Exp Morphol 22:333–48.PubMedGoogle Scholar
  24. Manasek FJ. 1972. A descriptive and experimental analysis of cardiac looping. Anat Rec 172:362A.Google Scholar
  25. Manasek FJ. 1981. Determinants of heart shape in early embryos. Fed Proc 40:2011–6. Manasek FJ, Burnside MB, Waterman RE. 1972. Myocardial cell shape change as a mechanism of embryonic heart looping. Dev Biol 29:349–71.CrossRefGoogle Scholar
  26. Manasek FJ, Isobe Y, Shimada Y, Hopkins W 1984. The embryonic myocardial cytoskeleton, interstitial pressure, and the control of morphogenesis. In: Nora JJ, Takao A, editors. Congenital heart disease: cause and processes. New York: Futura Publishing Co. p 359–76.Google Scholar
  27. Manasek FJ, Monroe RG. 1972. Early cardiac morphogenesis is independent of function. Dev Biol 27:584–8.PubMedCrossRefGoogle Scholar
  28. Männer J, Seidl W, Steding G. 1993. Correlation between the embryonic head flexures and cardiac development. An experimental study in chick embryos. Anat Embryol 188:269–85.PubMedCrossRefGoogle Scholar
  29. Nadal-Ginard B, Garcίa MP. 1972. The morphologic expression of each cardiac primordium in the chick embryo. J Embryol Exp Morphol 28:141–152.PubMedGoogle Scholar
  30. Nakamura A, Manasek FJ. 1978. Cardiac jelly fibrils: their distribution and organization. In: Resenquist GC, Bergsma D, editors. Morphogenesis and malformation of the cardiovascular system. Birth Defects: Original Article Series. Vol. 14, Number 7. New York: AR Liss Inc. p 229–50.Google Scholar
  31. Nakamura A, Manasek FJ. 1981. An experimental study of the relation of cardiac jelly to the shape of the early chick embryonic heart. J Embryol Exp Morphol 65:235–56.PubMedGoogle Scholar
  32. Netter FH, Van Mierop LHS. 1969. Embryology. In Netter FH, editor. CIBA collection of medical illustrations. Ardsley, New Jersey. CIBA Pharmaceutical Co: Vol. 5, p 119–25.Google Scholar
  33. Orts-Llorca F, Jiménez-Collado J. 1967. Determination of heart polarity (arterio venous axis) in the chicken embryo. Wilhelm Roux’ Archiv Entwicklungsmech. Org 158:147–63.Google Scholar
  34. Orts-Llorca F, Ruano-Gil D. 1967. A causal analysis of the heart curvatures in the chicken embryo. Wilhelm Roux’ Archiv Entwicklungsmcch Org 158:52–63.CrossRefGoogle Scholar
  35. Osmond MK, Butler AJ, Voon FCT, Bellairs R. 1991. The effects of retinoic acid on heart formation in the early chick embryo. Development (Camb) 113:1405–17.Google Scholar
  36. Patten BM. 1922. The formation of the cardiac loop in the chick. Am J Anat 30:373–97.CrossRefGoogle Scholar
  37. Patten BM. 1948. The Early Embryology of the Chick. 3rd ed. Philadelphia: The Blakiston Co. p 184–92.Google Scholar
  38. Romanoff AL. 1960. The Avian Embryo. New York: Macmillan. p 680–780.Google Scholar
  39. Roux W. 1895. Gesammelte Abhandlungen über Entwickelungsmechanik der Organismen. 2 vol. Leipzig, Engelmann.Google Scholar
  40. Shiraishi I, Takamatsu T, Fujita S. 1993. 3-D observation of N-cadherin expression during cardiac myofibrillogenesis of the chick embryo using a confocal laser scanning microscope. Anat Embryol 102:115–20.Google Scholar
  41. Shiraishi I, Takamatsu T, Minamikawa T, Fujita S. 1992. 3-D observation of actin filaments during cardiac myofibrinogenesis in chick embryo using a confocal laser scanning microscope. Anat Embryol 185:401–8.PubMedCrossRefGoogle Scholar
  42. Sissman NJ. 1966. Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature (Lond) 210:504–7.CrossRefGoogle Scholar
  43. Spitzer A. 1951. The Architecture of Normal and Malform Hearts. Springfield, IL: Charles C. Thomas.Google Scholar
  44. Stalsberg H. 1969a. The origin of heart asymmetry: right and left contributions to the early chick embryo heart. Dev Biol 19:109–27.CrossRefGoogle Scholar
  45. Stalsberg H. 1969b. Regional mitotic activity in the precardiac mesoderm and differentiating heart tube in the chick embryo. Dev Biol 20:18–45.CrossRefGoogle Scholar
  46. Stalsberg H, DeHaan RL. 1969. The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19:128–59.PubMedCrossRefGoogle Scholar
  47. Steding G, Seidl W. 1980. Contribution to the development of the heart. Part I: Normal development. Thorac Cardiovasc Surgeon 28:386–409.CrossRefGoogle Scholar
  48. Streeter GL. 1942. Development horizon in human embryos. Description of age group XI, 13 to 20 somites and age group XII, 21 to 29 somites. Carnegie Contrib Embryol 30:211–45.Google Scholar
  49. Van Keurcn M, Layton WM, Iacob RA, Kurnit DM. 1991. Situs inversus in the developing mouse: proteins affected by the iv mutation (genecopy) and the teratogen retinoic acid (phenocopy). Mol Reprod Dev 29:136–44.CrossRefGoogle Scholar
  50. Van Mierop LHS, Alley RD, Kausel HW, Stranahan A. 1962. The anatomy and embryology of endocardial cushion defects. J Thorac Cardiovasc Surg 43:71–83.Google Scholar
  51. Von Haller A. 1758. Sur la Formation du Coeur. Lausanne, Switzerland, M.M. Bousquet Publishing Co..Google Scholar
  52. Wenink ACG, Gittenberger-de Groot AC. 1985. The role of atrioventricular endocardial cushions in the septation of the heart. Int J Cardiol 8: 25–44.PubMedCrossRefGoogle Scholar
  53. Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FFB, Overbeek PA. 1993. Reversal of left-right asymmetry: a situs inversus mutation. Science (Wash DC) 260:679–82.CrossRefGoogle Scholar
  54. Yost HJ. 1992. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature (Lond) 357:158–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marίa V. de la Cruz

There are no affiliations available

Personalised recommendations