Skip to main content

Exact Methods to Compute Network Reliability

  • Chapter

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

In this chapter we present and compare some exact methods to resolve network reliability problems. These problems concern all kinds of networks, such as computer, communication or power networks. When components of the network are subject to random failures, the network may or may not continue functioning after the failures of some components. The probability that the network will function is its reliability. Networks are modeled by a graph G = (V, E) composed of elements that fail independently one another with known probabilities. The K-terminal reliability problem has been studied extensively. It consists in evaluating the probability that a given subset of vertices, denoted K, is connected. This problem is NP-hard. We propose here to present the main methods, developed since the 1970s. We first consider the enumeration methods using elementary states, paths or cuts. Then we explain the factoring method performed by reductions. These allow to handle series-parallel graphs to be processed in linear time. Finally, we present the decomposition method implemented as a table-based reduction algorithm allowing to resolve the reliability problem in linear time for graphs with bounded pathwidth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, J. A. (1979). An improved algorithm for network reliability, IEEE Transactions on Reliability, 28, 58–61.

    Article  MATH  Google Scholar 

  2. Arnborg, S. (1985). Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey, BIT, 25, 2–23.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnborg, S., Cornell, D. G. and Proskurowski, A. (1987). Complexity of finding embeddings in a k-tree, SIAM Journal of Algebraic and Discrete Methods, 8, 277–284.

    Article  MATH  Google Scholar 

  4. Ball, M. O. (1980). Complexity of network reliability computations, Networks, 10, 153–165.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beichelt, F. and Spross, L. (1987). An improved Abraham-Method for generating disjoint sums, IEEE Transactions on Reliability, 36, 70–74.

    Article  MATH  Google Scholar 

  6. Bodlaender, H. L. (1988). Dynamic programming on graphs with bounded treewidth, Proceedings of the 15th ICALP88, 317, pp. 105–118, Berlin: Springer Verlag.

    Google Scholar 

  7. Bodlaender, H. L. (1996). A linear time algorithm for finding tree-decompositions of small treewidth, SIAM Journal on Scientific Computing, 25, 1305–1317.

    MathSciNet  MATH  Google Scholar 

  8. Buzacott, J. A. and Chang, J. S. K. (1984). Cut-set intersections and node partitions, IEEE Transactions on Reliability, 33, 385–389.

    Article  MATH  Google Scholar 

  9. Buzacott, J. A. (1987). Node partition formula for directed graph reliability, Networks, 17, 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlier, J. and Lucet, C. (1996). A decomposition algorithm for network reliability evaluation, Discrete Applied Mathematics, 65, 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, M. S. and Jun, C. H. (1995). Some variant of polygon-to-chain reductions in evaluating reliability of undirected network, Microelectron. Reliab., 35, 1–11.

    Article  Google Scholar 

  12. Dotson, W. P. and Gobien, J. O. (1979). A new analysis technique for probabilistic graphs, IEEE Transactions on Circuits and Systems, 26, 855–865.

    Article  MathSciNet  Google Scholar 

  13. Gadani, J. P. (1981). System effectiveness evaluation using star and delta transformations, IEEE Transactions on Reliability, 30, 43–47.

    Article  MATH  Google Scholar 

  14. Hasanuddin Ahmad S. and Jamil, A. T. M. (1987). A modified technique for computing network reliability, IEEE Transactions on Reliability, 36, 554–556.

    Article  Google Scholar 

  15. Hasanuddin Ahmad, S. (1988). Simple enumeration of minimal cutsets of acyclic directed graph, IEEE Transactions on Reliability, 37, 484–487.

    Article  MATH  Google Scholar 

  16. Jain, S. P. Gopal, K. (1988). An efficient algorithm for computing global reliability of a network, IEEE Transactions on Reliability, 37, 487–492.

    Article  Google Scholar 

  17. Jasmon, G. B. and Kai, O. S. (1985). A new technique in minimal path and cutset evaluation, IEEE Transactions on Reliability, 34, 136–143.

    Article  MATH  Google Scholar 

  18. Kinnersley, N. G. (1992). The vertex separation number of a graph equals its path width, Inform. Proc. Letters, 42, 345–350.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai, M. K. F. (1994). Polygon-to-chain reductions work for networks with imperfect vertices, Microelectron. Reliab., 34, 267–274.

    Article  Google Scholar 

  20. Locks, M. O. (1978). Inverting and minimalizing path sets and cut sets, IEEE Transactions on Reliability, 27, 107–109.

    Article  MATH  Google Scholar 

  21. Locks, M. O. (1985). Recent developments in computing of system-reliability, IEEE Transactions on Reliability, 34, 425–435.

    Article  MATH  Google Scholar 

  22. Locks, M. O. (1987). A minimizing algorithm for sum of disjoint products, IEEE Transactions on Reliability, 36, 445–453.

    Article  MATH  Google Scholar 

  23. Lucet, C. (1993). Methode de décomposition pour l’évaluation de la fiabilité des réseaux, Ph.D. Thesis, Université de Technologie de Compiègne, Compiègne, France.

    Google Scholar 

  24. Martelli, A. (1976). A Gaussian elimination algorithm for the enumeration of cut sets in a graph, Journal of the Assoc. Comp. Machinery, 23, 58–73.

    Article  MathSciNet  MATH  Google Scholar 

  25. Misra, K. B. and Rao, T. S. M. (1970). Reliability analysis of redundant networks using flow graphs, IEEE Transactions on Reliability, 19, 19–24.

    Article  Google Scholar 

  26. Piekarski, M. (1965). Listing of all possible trees of a linear graph, IEEE Transactions on Circuit Theory, 12, 124–125.

    Google Scholar 

  27. Rai, S. and Aggarwal, K. K. (1978). An efficient method for reliability evaluation of a general network, IEEE Transactions on Reliability, 27, 206–211.

    Article  MATH  Google Scholar 

  28. Rai, S., Veeraraghavan, M. and Trivedi, K. S. (1995). A survey of efficient reliability computation using disjoint products approach, Networks, 25, 147–163.

    Article  MATH  Google Scholar 

  29. Rosenthal, A. (1977). Computing the reliability of complex networks, SIAM Journal of Applied Mathematics, 32, 384–393.

    Article  MATH  Google Scholar 

  30. Satyanarayana, A. and Chang, M. (1983). Network reliability and the factoring theorem, Networks, 13, 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, Y. (1995). A new simple algorithm for enumerating all minimal paths and cuts of a graph, Microelectron. Reliab., 35, 973–976.

    Article  Google Scholar 

  32. Shier, D. R. and Whited, D. E. (1986). Iterative algorithms for generating minimal cutsets in directed graphs, Networks, 16, 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  33. Theologou, O. (1990). Contribution a l’évaluation de la fiabilité des réseaux, Ph.D. Thesis, Université de Technologie de Compiègne, Compiègne, France.

    Google Scholar 

  34. Theologou, O. and Carlier, J. (1991). Factoring and reductions for networks with imperfect vertices, IEEE Transactions on Reliability, 40, 210–217.

    Article  MATH  Google Scholar 

  35. Tsukiyama, S., Shirakawa, I. and Ozaki, H. (1980). An algorithm to enumerate all cutsets of a graph in linear time per cutset, Journal of the Assoc. Comp. Machinery, 27, 619–632.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wood, R. K. (1985). A factoring algorithm using polygon-to-chain reductions for computing K-terminal network reliability, Networks, 15, 173–190.

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan, L., Taha, H. A. and Landers, T. L. (1994). A recursive approach for enumerating minimal cutsets in a network, IEEE Transactions on Reliability, 43, 383–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lucet, C., Manouvrier, JF. (1999). Exact Methods to Compute Network Reliability. In: Ionescu, D.C., Limnios, N. (eds) Statistical and Probabilistic Models in Reliability. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1782-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1782-4_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7280-9

  • Online ISBN: 978-1-4612-1782-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics