Advertisement

Adjoint Methods for Inverse Free Convection Problems with Application to Solidification Processes

  • Nicholas Zabaras
Part of the Progress in Systems and Control Theory book series (PSCT, volume 24)

Abstract

New advanced methodologies for thermal process design can be successfully developed using inverse problem theory. Such techniques are reviewed here for free convection problems with applications to the design of directional solidification and Bridgman crystal growth processes.

Keywords

Heat Flux Inverse Problem Directional Solidification Mold Wall Adjoint Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. N. Tichonov and V. Ya. Arsenin. Solution of Ill-Posed Problems, Halsted Press, New York, 1979.Google Scholar
  2. [2]
    A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems, Springer Series in Applied Mathematical Sciences, Vol. 120, 1996.CrossRefGoogle Scholar
  3. [3]
    J. V. Beck, B. Blackwell and C. R. St. Clair, Jr.. Inverse Heat Conduction, Ill-posed Problems, Wiley-Interscience, New York, 1985.Google Scholar
  4. [4]
    A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York, 1987.zbMATHGoogle Scholar
  5. [5]
    H. T. Banks. Control and Estimation in Distributed Parameter Systems, SIAM, Philadelphia, 1992.zbMATHCrossRefGoogle Scholar
  6. [6]
    D. A. Murio. The Mollification Method and the Numerical Solution of Ill-Posed Problems, Wiley, New York, 1993.CrossRefGoogle Scholar
  7. [7]
    X. Li and J. Yong. Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1994.zbMATHGoogle Scholar
  8. [8]
    O. M. Alifanov. Inverse Heat Transfer Problems, Springer-Verlag, Berlin, 1994.zbMATHGoogle Scholar
  9. [9]
    V. Barbu. Analysis and control of nonlinear infinite dimensional systems, Mathematics in Science and Engineering 190, Academic Press, Boston, 1993.CrossRefGoogle Scholar
  10. [10]
    R. Neittaanmaki and D. Tiba. Optimal control of nonlinear parabolic systems: Theory, Algorithms and Applications, Marcel Dekker, New York, 1994.Google Scholar
  11. [11]
    J. Baumeister. On the treatment of free boundary problems with the heat equation via optimal control, Math. Meth. in the Appl. Sci., 1:40–61, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    K. H. Hoffmann and J. Sprekels. Real-time control of the free boundary in a two-phase Stefan problem, Numerical Functional Analysis and Optimization, 5(1):47–76, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    C. Saguez. Simulation and optimal control of free-boundary problems, International Series of Numerical Mathematics: Numerical Treatment of Free Boundary Value Problems (edts. L. Collatz et al.), ISNM 58:270–286, 1982.Google Scholar
  14. [14]
    D. Colton and R. Reemtsen. The numerical solution of the inverse Stefan problem in two space variables, SIAM J. Appl. Math., 44(5):996–1013, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    M. A. Katz and B. Rubinsky. An inverse finite element technique to determine the change of phase interface location in one-dimensional melting problems, Numerical Heat Transfer, 7: 269–283, 1984.CrossRefGoogle Scholar
  16. [16]
    D. Tiba. Boundary control for a Stefan problem. Optimal control of partial differential equations (edts. K.-H. Hoffman and W. Krabs), Birkhauser, Basel, 229–242, 1984.Google Scholar
  17. [17]
    E. Laitinen and P. Neittaanmaki. On numerical solution of the control problems connected with the control of the secondary cooling in the continuous casting process, Control: Theory and Advanced Technology, 4:285–305, 1988.MathSciNetGoogle Scholar
  18. [18]
    N. Zabaras. Inverse FEM techniques for the analysis of solidification processes, Int. J. Numer. Methods Eng., 9:1569–1587, 1990.CrossRefGoogle Scholar
  19. [19]
    V. Barbu. The inverse one phase Stefan problem, Differential and Integral Equations, 3: 209–218, 1990.MathSciNetGoogle Scholar
  20. [20]
    Y. Ruan and N. Zabaras. An inverse finite element technique to determine the change of phase interface location in two-dimensional melting problems, Communications in Appl. Numer. Methods, 7:325–338, 1991.zbMATHCrossRefGoogle Scholar
  21. [21]
    T. Roubicek and C. Verdi. A stable approximation of a constrained optimal control for continuous casting, Numerical Functional Analysis and Optimization, 13:487–494, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    N. Zabaras, Y. Ruan and O. Richmond. On the design of two-dimensional Stefan processes with desired freezing front motion, Numerical Heat Transfer, 21B:307–325, 1992.Google Scholar
  23. [23]
    N. Zabaras and S. Kang. On the solution of in an ill-posed inverse solidification problem using minimization techniques in finite and infinite dimensional function spaces, Int. J. Num. Meth. Eng., 36:3973–3990, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    S. Kang and N. Zabaras. Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method, Int. J. Num. Meth. Eng., 38:63–80, 1995.zbMATHCrossRefGoogle Scholar
  25. [25]
    P. Cuvelier. Optimal control of a system governed by the Navier-Stokes equations coupled with the heat equations, New Developments in Differential Equations (edt. W. Eckhaus), North-Holland, Amsterdam, 81–98, 1976.Google Scholar
  26. [26]
    A. Moutsoglou. An inverse convection problem, J. Heat Transfer ASME, 111:37–43, 1989.CrossRefGoogle Scholar
  27. [27]
    N. Zabaras. Design of natural convection driven solidification processes with desired freezing interface morphologies, Second International Symposium on Inverse Problems in Engineering Mechanics, ISIP’ 94, Paris, France, 61–68, 1994.Google Scholar
  28. [28]
    N. Zabaras and T. Hung Nguyen. Control of the freezing interface morphology in solidification processes in the presence of natural convection, Int. J. Num. Meth. Eng. 38:1555–1578, 1995.zbMATHCrossRefGoogle Scholar
  29. [29]
    M. D. Gunzburger. Flow Control, Springer Verlag, New York, 1995.zbMATHGoogle Scholar
  30. [30]
    M. D. Gunzburger, L. Hou and T. Svobodny. Heating and cooling control of temperature distributions along boundaries of flow domains, J. Math. Syst. Estim. Control 3(2):147–172, 1993.MathSciNetGoogle Scholar
  31. [31]
    M. D. Gunzburger, and H. C. Lee. Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, Comp. Methods Appl. Mech. Engr. 118:133–152, 1994.MathSciNetzbMATHGoogle Scholar
  32. [32]
    N. Zabaras and G. Z. Yang. Inverse design of solidification processes with desired freezing front motions and heat fluxes, 2nd International Conference on Inverse Problems in Engineering (edts. D. Delaunay and Y. Jarny), June 1996, France (in press).Google Scholar
  33. [33]
    G. Z. Yang and N. Zabaras. Inverse design and control of microstructural development of solidification processes with natural convection, proceedings of the 31st National Heat Transfer Conference, Houston, TX, 1:1–8, July 1996.Google Scholar
  34. [34]
    G. Yang and N. Zabaras. A functional optimization formulation and implementation of an inverse natural convection problem, Comput. Methods Appl. Mech. Engrg. 144:245–274, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    G. Yang and N. Zabaras. An adjoint method for the inverse design of solidification processes with natural convection, Int. J. Num. Meth. Engr. (submitted).Google Scholar
  36. [36]
    G. Yang and N. Zabaras. The adjoint method for an inverse design problem in the directional solidification of binary alloys, J. Comp. Physics (in press).Google Scholar
  37. [37]
    M. Flemings. Solidification Processing, McGraw Hill, New York, 1974.CrossRefGoogle Scholar
  38. [38]
    S. H. Davis, H. E. Huppert, U. Muller and M. G. Worster (edts.). Interactive Dynamics of Convection and Solidification, NATO ASI Series E: Applied Sciences, Vol. 219. Kluwer Academic Publishers, London, 1992.CrossRefGoogle Scholar
  39. [39]
    A. Bejan. Convection Heat Transfer, Wiley-Interscience, New York, 1995.Google Scholar
  40. [40]
    D. G. Luenberger. Optimization by Vector Space Methods, WileyInterscience, New York, 1968.Google Scholar
  41. [41]
    R. Fletcher. Practical Methods of Optimization Wiley-Interscience, New York, 1987.zbMATHGoogle Scholar
  42. [42]
    G. Z. Yang. The Adjoint Method for the Inverse Design of Solidification Processes with Convection, Doctoral Dissertation, Cornell University, August 1997.Google Scholar
  43. [43]
    M. Thompson and J. Szekely. Mathematical and physical modeling of double-diffusive convection of aqueous solutions crystallizing at a vertical wall, J. Fluid Mech. 187:409–433, 1988.zbMATHCrossRefGoogle Scholar
  44. [44]
    J. Szekely and A. S. Jassal. An experimental and analytical study of the solidification of a binary dendritic system, Metall. Trans. 9B:389–398, 1978.Google Scholar
  45. [45]
    W. Kurz and D. J. Fisher. Fundamentals of Solidification, Trans Tech Publications Ltd, Switzerland, 1989.Google Scholar
  46. [46]
    S. R. Coriell and G. B. McFadden. Morphological stability, Handbook of Crystal Growth, Fundamentals: Transport and Stability (edt. D. T. J. Hurle) lb:785–857, (1993).Google Scholar
  47. [47]
    S. De Cheveigne, C. Guthmann and P. Kurowski. Directional solidification of metallic alloys: The nature of the bifurcation from planar to cellular interface, J. Crystal Growth 92:616–628, 1988.CrossRefGoogle Scholar
  48. [48]
    C. N. Zanio. Semiconductors and Semimetals, (edts. R.K. Willardson and A. C. Beer), Academic Press, New York, (chapter 1) 13, 1978.Google Scholar
  49. [49]
    J. Derby. An overview of convection during the growth of single crystals from the melt, U. of Minnesota Supercomputer Inst. Report UMSI 92/147, 1992.Google Scholar
  50. [50]
    P. M. Adornato and R. A. Brown. Convection and segregation in directional solidification of dilute and non-dilute binary alloys: effects of ampoule and furnace design, J. of Crystal Growth, 80:155–190, 1987.CrossRefGoogle Scholar
  51. [51]
    D. H. Kim, P. M. Adornato and R. A. Brown. Effect of vertical magnetic field on convection and segregation in vertical crystal growth, J. of Crystal Growth, 89:339–356, 1988.CrossRefGoogle Scholar
  52. [52]
    D. H. Kim and R. A. Brown. Models for convection and segregation in the growth of HgCdTe by the vertical Bridgman method, J. of Crystal Growth, 96:609–627, 1989.CrossRefGoogle Scholar
  53. [53]
    A. Rouzaud, D. Camel, and J. J. Favier. A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth, J. of Crystal Growth, 73:149–166, 1988.CrossRefGoogle Scholar
  54. [54]
    D. H. Kim, and R. A. Brown. Modeling of the dynamics of HgCdTe growth by the vertical Bridgman method, J. of Crystal Growth, 114:411–434, 1991CrossRefGoogle Scholar
  55. [55]
    S. Brandon and J. J. Derby. Internal radiative transport in the vertical Bridgman growth of semi-transparent crystals, J. Crystal Growth, 110:481–500, 1991.CrossRefGoogle Scholar
  56. [56]
    J. Derby. Modeling heat transfer and segregation during the vertical growth of Cadmium Zinc Telluride, U. of Minnesota Supercomputer Inst. Report, UMSI 94/205, 1994.Google Scholar
  57. [57]
    J. A. Dantzig and L-S Chao. Fluid Flow and Microstructure Development, Low Gravity Fluid Dynamics and Transport Phenomena, (edts. J. Koster and R. Sani) 411–436, 1990.Google Scholar
  58. [58]
    J. A. Dantzig and L-S Chao. Interface Control in Bridgman Crystal Growth, Modeling of Casting, Welding and Advanced Solidification Processes V,(edts. M. Rappaz, et al.) 715–723, 1991.Google Scholar
  59. [59]
    J. Szekely. Fluid Flow Phenomena in Metals Processing, Academic Press, New York, 1979.Google Scholar
  60. [60]
    E. Blums, Y. Mikhailov and R. Ozols. Heat and Mass Transfer in MHD Flows, World Scientific, Singapore, 1987.Google Scholar
  61. [61]
    R. J. Moreau. Magnetohydrodynamics, Kluwer Academic Publishers, Boston, 1990.zbMATHGoogle Scholar
  62. [62]
    R. J. Prescott and F. R Incropera. Magnetically damped convection during solidification of a binary metal alloy, ASME J. Heat Transfer 115:302–310, 1993.CrossRefGoogle Scholar
  63. [63]
    P. J. Prescott and F. P. Incropera. The effect of turbulence on solidification of a binary metal alloy with electromagnetic stirring, ASME J. Heat Transfer, 117:716–724, 1995.CrossRefGoogle Scholar
  64. [64]
    L. N. Hjellming and J. S. Walker. Melt motion in a Czocralski crystal puller with an axial magnetic field: isothermal motion, J. Fluid Mechanics, 164:237–274, 1986.zbMATHCrossRefGoogle Scholar
  65. [65]
    L. N. Hjellming and J. S. Walker. Mass transport in a Czocralski puller with strong magnetic field, J. Crystal Growth, 85:25–31, 1987.CrossRefGoogle Scholar
  66. [66]
    L. N. Hjellming and J. S. Walker. Melt motion in a Czocralski crystal puller with an axial magnetic field:motion due to buoyancy and thermocapillarity, J. Fluid Mechanics, 182:335–368, 1987.zbMATHCrossRefGoogle Scholar
  67. [67]
    L. N. Hjellming and J. S. Walker. Mass transport in a Czocralski puller with an axial magnetic field: melt motion due to crystal growth and buoyancy, J. Crystal Growth, 92:371–387, 1988.CrossRefGoogle Scholar
  68. [68]
    D. H. Kim, P. M. Adornato and R. A. Brown. Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth, J. Crystal Growth, 89:339–356, 1988.CrossRefGoogle Scholar
  69. [69]
    S. Kobayashi. Numerical analysis of oxygen transport in magnetic Czochralski growth, J. Crystal Growth, 85:69–74, 1987.CrossRefGoogle Scholar
  70. [70]
    M. G. Williams, J. S. Walker and W. E. Langlois. Melt motion in a Czochralski puller with a weak transverse magnetic field, J. Crystal Growth, 100:233–253, 1990.CrossRefGoogle Scholar
  71. [71]
    T. W. Hicks, A. E. Organ and N. Riley. Oxygen transport in magnetic Czochralski growth of silicon with a nonuniform magnetic field, J. Crystal Growth, 94:213–228, 1989.CrossRefGoogle Scholar
  72. [72]
    H. Hirata and K. Hoshikawa. Homogeneous increase in oxygen concentration in Czochralski silicon crystals by a cusp magnetic field, J. Crystal Growth, 98:777–781, 1989.CrossRefGoogle Scholar
  73. [73]
    H. R. B. Orlande and M. N. Ozisik. Determination of the reaction function in a reaction-diffusion parabolic problem, Inverse Problems in Engineering: Theory and Practice, First Int. Conf, Palm Coast Fl., (edts. N. Zabaras et al.) 117–124, 1993.Google Scholar
  74. [74]
    M. Berggren, R. Glowinski and J. L. Lions. A computational approach to controllability issues for flow-related models. (I): Pointwise control of the viscous Burgers equationInt. J. Computational Fluid Dynamics, 7:237–252, 1996.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Nicholas Zabaras
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations