Advertisement

Moduli Spaces of Flat Connections on 2-Manifolds, Cobordism, and Witten’s Volume Formulas

  • E. Meinrenken
  • C. Woodward
Part of the Progress in Mathematics book series (PM, volume 172)

Abstract

According to Atiyah-Bott [ABA] the moduli space of flat connections on a compact oriented 2-manifold with prescribed holonomies around the boundary is a finite-dimensional symplectic manifold, possibly singular. A standard approach [W1W2] to computing invariants (symplectic volumes, Riemann-Roch numbers, etc.) of the moduli space is to study the “factorization” of invariants under gluing of 2-manifolds along boundary components. Given such a factorization result, any choice of a “pants decomposition” of the 2-manifold reduces the computation of invariants to the three-holed sphere.

Keywords

Modulus Space Conjugacy Class Boundary Component Symplectic Form Maximal Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M. F. Atiyah, The geometry and physics of knots. Cambridge University Press, Cambridge, 1990MATHCrossRefGoogle Scholar
  2. [AB]
    M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfacesPhil. Trans. R. Soc. London 308(1982), 523–615.MathSciNetGoogle Scholar
  3. [BGV]
    N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operatorsGrundlehren der Mathematischen Wissenschaften 298. Springer-Verlag, Berlin, 1992.MATHCrossRefGoogle Scholar
  4. [BrD]
    T. Bröcker, T. tom Dieck Representations of compact Lie groups.Graduate Texts in Mathematics, 98. Springer-Verlag, New York, 1985.MATHGoogle Scholar
  5. [C]
    S. Chang, private communication.Google Scholar
  6. [D1]
    S. K. Donaldson, Boundary value problems for Yang-Mills fieldsJ. Geom. Phys. 8(1992), 89–122.MathSciNetMATHCrossRefGoogle Scholar
  7. [D2]
    S. K. Donaldson, Gluing techniques in the cohomology of moduli spaces. Topological methods in modern mathematics (Stony Brook, NY, 1991), 137–170, Publish or Perish, Houston, TX, 1993.Google Scholar
  8. [GGK1]
    V. Ginzburg, V. Guillemin, Y. Karshon, Cobordism theory and localization formulas for Hamiltonian group actionsInt. Math. Res. Notices 5(1996), 221–234.MathSciNetCrossRefGoogle Scholar
  9. [GGK2]
    V. Ginzburg, V. Guillemin, Y. Karshon, Cobordism techniques in symplectic geometry, (in preparation.)Google Scholar
  10. [GS]
    V. Guillemin, S. SternbergSymplectic Techniques in PhysicsCambridge University Press, 1990.MATHGoogle Scholar
  11. [GLS]
    V. Guillemin, E. Lerman, S. SternbergSymplectic Fibrations and Multiplicity DiagramsCambridge University Press, Cambridge, 1996.MATHCrossRefGoogle Scholar
  12. [GP]
    V. Guillemin, E. Prato, Heckman, B. Kostant, and Steinberg for-mulas for symplectic manifolds, Adv. Math. 82(1990), 160–179.MathSciNetMATHGoogle Scholar
  13. [Ho]
    L. HörmanderThe Analysis of Linear Partial Differential Oper- ators I2nd ed. Springer-Verlag, 1990.CrossRefGoogle Scholar
  14. [H]
    J. Huebschmann, Symplectic and Poisson structures of certain moduli spaces, IDuke Math. J. 80(1995), 737–756.MathSciNetMATHCrossRefGoogle Scholar
  15. [J]
    L. Jeffrey, Extended moduli spaces of flat connections on Riemann surfacesMath. Ann. 298(1994), 667–692.MathSciNetMATHCrossRefGoogle Scholar
  16. [JW1]
    L. Jeffrey, J. Weitsman, Toric structures on the moduli space of flat connections on a Riemann surface. II.Inductive decomposition of the moduli spaceMath. Ann. 307(1997), 93–108.MathSciNetMATHCrossRefGoogle Scholar
  17. [JW2]
    L. Jeffrey, J. Weitsman, Symplectic geometry of the moduli space of flat connections on a Riemann surface, inductive decompositions and vanishing theorems, preprint, December 1996, revised August 1997.Google Scholar
  18. [K]
    Y. Karshon, Moment maps and non-compact cobordisms, preprint (1997), dg-ga/9701006.Google Scholar
  19. [L1]
    K. Liu, Heat kernel and moduli spaceMath. Res. Lett.3 (1996), 743–76.MathSciNetMATHGoogle Scholar
  20. [L2]
    K. Liu, Heat kernel and moduli spaces II, preprint, dg-ga/9612001.Google Scholar
  21. [MW1]
    E. Meinrenken, C. Woodward, Hom. Honian loop group actions and Verlinde factorization. To appear inJ. Diff. Geom. Google Scholar
  22. [MW2]
    E. Meinrenken, C. Woodward, Fusion of Hamiltonian loop group manifolds and cobordism. To appear inMath. Zeit. Google Scholar
  23. [PS]
    A. Pressley, G. SegalLoop GroupsOxford University Press, Ox-ford, 1988.MATHGoogle Scholar
  24. [Se]
    G. Segal, Lecture notes, Oxford, 1988.Google Scholar
  25. [S]
    S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills fieldProc. Nat. Acad. Sci. U.S.A. 74(1977), 5253–5254.MathSciNetMATHCrossRefGoogle Scholar
  26. [SL]
    R. Sjamaar, R. Lerman, Stratified symplectic spaces and reduc-tion, Ann. of Math. 134(1991), 375–422.MathSciNetMATHCrossRefGoogle Scholar
  27. [T]
    M. Thaddeus, Stable pairs, linear systems and the Verlinde formulaInvent. Math. 117(1994), 317–353.MathSciNetMATHCrossRefGoogle Scholar
  28. [W1]
    E. Witten, On quantum gauge theories in two dimensionsComm. Math. Phys. 141(1991), 153–209.MathSciNetMATHCrossRefGoogle Scholar
  29. [W2]
    E. Witten, Two-dimensional gauge theories revisitedJ. Geom. Phys. 9(1992), 303–368.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. Meinrenken
    • 1
  • C. Woodward
    • 2
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsRutgers UniversityUSA

Personalised recommendations