Skip to main content

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

The normal growth and development of multicellular organisms requires precise spatial and temporal regulation of gene expression. For a subset of genes, steroid and nuclear hormone receptors act to modulate gene transcription by binding to hormone-responsive elements (HREs), usually present within the 5’-flanking region of the gene. Within the eukaryotic nucleus these regulatory DNA elements are associated with histone and nonhistone proteins to form chromatin. Consequently, a thorough mechanistic understanding of receptor-mediated transcription must reflect the fact that receptors, in concert with other transcription factors, act on genes highly organized as chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler AJ, Scheller A, Hoffman Y, and Robins DM (1991): Multiple components of a complex androgen-dependent enhancer. Mol. Endo. 5: 1587–1596.

    Article  CAS  Google Scholar 

  • Ali Z, and Singh N. (1987): Binding of linker histones to core nucleosome. Journal of Biological Chemistry 262: 12989–12993.

    PubMed  CAS  Google Scholar 

  • Almer A, and Hörz W. (1986): Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J 5: 2681–2687.

    PubMed  CAS  Google Scholar 

  • Amero SA, Kretsinger RH, Moncrief ND, Yamamoto KR, and Pearson WR (1992): The origin of nuclear receptor proteins: A single precursor distinct from other transcription factors. Mol. Endocrinol. 6: 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Archer TK, Cordingley MG, Marsaud V, Richard-Foy H, and Hager GL (1989): Steroid transactivation at a promoter organized in a specifically-positioned array of nucleosomes. In Steroid/Thyroid Hormone Receptor Family and Gene Regulation JA Gustafsson, H. Eriksson, and J. Carlstedt-Duke, eds. Berlin: Birkhauser Verlag AG, pp. 221–238.

    Google Scholar 

  • Archer TK, Cordingley MG, Wolford RG, and Hager GL (1991): Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11: 688–698.

    PubMed  CAS  Google Scholar 

  • Archer TK, Lefebvre P, Wolford RG, and Hager GL (1992): Transcription factor loading on the MMTV promoter: A bimodal mechanism for promoter activation. Science 255: 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Archer TK (1993): Nucleosomes modulate access of transcription factor to the MMTV promoter in vivo and in vitro Ann. NYAcad. Sci. 684: 196–198.

    Article  CAS  Google Scholar 

  • Archer TK, Lee, H.-L, Cordingley MG, Mymryk JS, Fragoso G, Berard DS, and Hager GL (1994a). Differential steroid hormone induction of transcription from the mouse mammary tumor virus promoter. Mol. Endo. 8: 568–576.

    Article  CAS  Google Scholar 

  • Archer TK, Zaniewski E, Moyer M, and Nordeen SK (1994b). The differential capacity of glucocorticoids and progestins to alter chromatin structure and induce gene expression in human breast cancer cells. Mol. Endo. 8: 1154–1162.

    Article  CAS  Google Scholar 

  • Archer TK, Fryer CJ, Lee, H.-L, Zaniewski E, Liang T, and Mymryk JS (1995): Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo J. Steroid Biochem. Mol. Biol. 53: 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Archer, T.K, and Mymryk JS (1995): Modulation of transcription factor access and activity at the MMTV promoter in vivo In The Nucleus AP Wolffe, ed. Greenwich: JAI Press Inc., pp. 123–150.

    Chapter  Google Scholar 

  • Arents G, Burlingame RW, Wang, B.-C, Love WE, and Moudrianakis EN (1991): The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88: 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  • Arents G, and Moudrianakis EN (1993): Topography of the histone octamer surface: Repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90: 10489–10493.

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad C, Nawaz Z, Baniahmad A, Gleeson, M.AG, Tsai, M.-J, and O’Malley BW (1995): Enhancement of human estrogen receptor activity by SPT6: A potential coactivator. Mol. Endo. 9: 34–43.

    Article  CAS  Google Scholar 

  • Bellard M, Dretzen G, Bellard F, Kaye JS, Pratt-Kaye S, and Chambon, P (1986): Hormonally induced alterations of chromatin structure in the polyadenylation and transcription termination regions of the chicken ovalbumin gene. EMBO J 5: 567–574.

    PubMed  CAS  Google Scholar 

  • Bloom KS, and Anderson JN (1982): Hormonal regulation of the conformation of the ovalbumin gene in chick oviduct chromatin. J. Biol. Chem. 257: 13018–13027.

    PubMed  CAS  Google Scholar 

  • Bocquei MT, Ji J, Ylikomi T, Benhamou B, Vergezac A, Chambon P, and Gronemeyer H. (1993): Type II antagonists impair the DNA binding of steroid hormone receptors without affecting dimerization. J. Steroid. Biochem. Mol. Biol. 45: 205–215.

    Article  Google Scholar 

  • Botvin A, and Winston, F (1996): Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473–1476.

    Article  Google Scholar 

  • Brüggemeier U, Kalff M, Franke S, Scheidereit C, and Beato, M (1991): Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell 64: 565–572.

    Article  PubMed  Google Scholar 

  • Buetti E, Kühnel B, and Diggelmann, H (1989): Dual function of a nuclear factor I binding site in MMTV transcription regulation. Nucl. Acids Res. 17: 3065–3078.

    Article  PubMed  CAS  Google Scholar 

  • Buetti, E (1994): Stably integrated mouse mammary tumor virus long terminal repeat DNA requires the octamer motifs for basal promoter activity. Mol. Cell. Biol. 14: 1191–1203.

    PubMed  CAS  Google Scholar 

  • Buetti E, and Kühnel, B (1986): Distinct sequence elements involved in the glucocorticoid regulation of the mouse mammary tumor virus promoter identified by linker scanning mutagenesis. J. Mol. Biol. 190: 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Burch, J.B, and Weintraub, H (1983): Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene. Cell 33: 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR, Levinson RS, Yamamoto KR, and Kornberg RD (1996a). Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev 10: 2131–2144.

    Article  CAS  Google Scholar 

  • Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, and Kornberg RD (1996b). RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249–1260.

    Article  CAS  Google Scholar 

  • Cato, A.CB, Henderson D, and Ponta, H (1987): The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J 6: 363–368.

    PubMed  CAS  Google Scholar 

  • Cavaillès V, Dauvois S, L’Horset F, Lopez G, Hoare S, Kushner PJ, and Parker MG (1995): Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14: 3741–3751.

    PubMed  Google Scholar 

  • Cavallini B, Huet J, Plassat JL, Sentenac A, Egly JM, and Chambon, P (1988): A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Maler BA, and Yamamoto KR (1983): DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.D, and Evans RM (1995): A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Clark-Adams CD, Norris D, Osley MA, Fassler JS, and Winston, F (1988): Changes in histone gene dosage alter transcription in yeast. Genes Dev 2: 150–159.

    Article  PubMed  CAS  Google Scholar 

  • Cordingley MG, Riegel AT, and Hager GL (1987): Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Cordingley, M.G, and Hager GL (1988): Binding of multiple factors to the MMTV promoter in crude and fractionated nuclear extracts. Nucl. Acids Res. 16: 609–628.

    Article  PubMed  CAS  Google Scholar 

  • Côté J, Quinn J, Workman JL, and Peterson CL (1994): Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60.

    Article  PubMed  Google Scholar 

  • Crettaz M, Muller-Weiland D, and Kahn CR (1988): Transcriptional and posttranscriptional regulation of tyrosine aminotransferase by insulin in rat hepatoma cells. Biochemistry 27: 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Cullen KE, Kladde MP, and Seyfred MA (1993): Interaction between transcription regulatory regions of prolactin chromatin. Science 261: 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Dedhar S, Rennie PS, Shago M, Leung Hagesteijn, C.-Y, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, and Giguëre V (1994): Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367: 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Eggert M, Möws CC, Tripier D, Arnold R, Michel J, Nickel J, Schmidt S, Beato M, and Renkawitz R (1995): A fraction enriched in a novel glucocorticoid receptor-interacting protein stimulates receptor-department transcription in vitro J. Biol. Chem. 270: 30755–30759.

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G (1992): Chromatin as an essential part of the transcriptional mechanism. Nature 355: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Folger K, Anderson JN, Hayward MA, and Shapiro DJ (1983): Nuclease sensitivity and DNA methylation in estrogen regulation of Xenopus laevis vitellogenin gene expression. J. Biol. Chem. 258: 8908–8914.

    PubMed  CAS  Google Scholar 

  • Fondell JD, Roy AL, and Roeder RG (1993): Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: Implications for active repression. Genes Dev 7: 1400–1410.

    Article  PubMed  CAS  Google Scholar 

  • Fragoso G, John S, Roberts MS, and Hager GL (1995): Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev 9: 1933–1947.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel B, Montecino M, Green J, Aslam F, Desai R, Banerjee C, Stein JL, Lian JB, and Stein GS (1996): Basal and vitamin D-responsive activity of the rat osteocalcin promoter in stably transfected osteosarcoma cells: Requirement of upstream sequences for control by the proximal regulatory domain. Endocrinology 137: 1080–1088.

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Holloway JM, Devary OV, and Rosenfeld MG (1988): The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen responsive elements. Cell 54: 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Lipkin SM, Devary OV, and Rosenfeld MG (1989): Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59: 697–708.

    Article  PubMed  CAS  Google Scholar 

  • Gowland, P.L, and Buetti E (1989): Mutations in the hormone regulatory element of mouse mammary tumor virus differentially affect the response to progestins, androgens, and glucocorticoids. Mol. Cell. Biol. 9: 3999–4008.

    PubMed  CAS  Google Scholar 

  • Grange T, Roux J, Rigaud G, and Pictet R (1989): Two remote glucocorticoid responsive units interact cooperatively to promote glucocorticoid induction of rat tyrosine aminotransferase gene expression. Nucl. Acids Res. 17: 8695–8709.

    Article  PubMed  CAS  Google Scholar 

  • Green S, Kumar V, Krust A, Walter P, and Chambon P (1986): Structural and functional domains of the estrogen receptor. Cold Spring Harbor Symp. Quant. Biol. 51: 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Green S, and Chambon P (1986): A superfamily of potentially oncogenic hormone receptors [news]. Nature 324: 615–617.

    Article  PubMed  CAS  Google Scholar 

  • Green S, and Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1990): Histone function in transcription. Annu. Rev. Cell. Biol. 6: 643–678.

    Article  PubMed  CAS  Google Scholar 

  • Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, and Milgrom E (1989): Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57: 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Hache, R.J, and Deeley RG (1988): Organization, sequence and nuclease hypersensitivity of repetitive elements flanking the chicken apoVLDLII gene: Extended sequence similarity to elements flanking the chicken vitellogenin gene. Nucl. Acids Res. 16: 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Hager GL, Archer TK, Fragoso G, Bresnick EH, Tsukagoshi Y, John S, and Smith CL (1993): Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harbor Symp. Quant. Biol.: DNA and Chromosomes 58: 63–71.

    Article  CAS  Google Scholar 

  • Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, and Brown M (1994): Estrogen receptor-associated proteins: Possible mediators of hormone-induced transcription. Science 264: 1455–1458.

    Article  PubMed  CAS  Google Scholar 

  • Han M, and Grunstein M (1988): Nucleosome loss activates yeast downstream promoters in vivo. Cell 55: 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ (1996): Site-directed cleavage of DNA by a linker histone-Fe(II) EDTA conjugate: Localization of a globular domain binding site within a nucleosome. Biochemistry 35: 11931–11937.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, J.J, and Wolfe AP (1992): The interaction of transcription factors with nucleosomal DNA. BioEssays 14: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Hemenway C, and Robins DM (1987): DNase I-hypersensitive sites associated with expression and hormonal regulation of mouse C4 and Slp genes. Proc. Natl. Acad. Sci. USA 84: 4816–4820.

    Article  PubMed  CAS  Google Scholar 

  • Hong H, Kohli K, Trivedi A, Johnson DL, and Stallcup MR (1996): GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93: 4948–4952.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, and Tung L (1996): Nuclear receptor coactivators and corepressors. Mol. Endo. 10: 1167–1177.

    Article  CAS  Google Scholar 

  • Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK, and Rosenfeld MG (1995): Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.

    Article  PubMed  Google Scholar 

  • Huang AL, Ostrowski MC, Berard D, and Hager GL (1981): Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27 (2 Pt 1), 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Imbalzano AN, Kwon H, Green MR, and Kingston RE (1994): Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Jump DB, Wong NC, and Oppenheimer JH (1987): Chromatin structure and methylation state of a thyroid hormone-responsive gene in rat liver. J. Biol. Chem. 262: 778–784.

    PubMed  CAS  Google Scholar 

  • Jump DB, Bell A, and Santiago V (1990): Thyroid hormone and dietary carbohydrate interact to regulate rat liver S14 gene transcription and chromatin structure. J. Biol. Chem. 265: 3474–3478.

    PubMed  CAS  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin, S.-C, Heyman RA, Rose DW, Glass CK, and Rosenfeld MG (1996): A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen JA, O’Malley BW, and Katzenellenbogen BS (1996): Tripartite steroid hormone receptor pharmacology: Interaction with multiple effector sites as a basis for the cell-and promoter-specific action of these hormones. Mol. Endocrinol. 10: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Bunker CA, and Imbalzano AN (1996): Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 10: 905–920.

    Article  PubMed  CAS  Google Scholar 

  • Kladde MP, Xu M, and Simpson RT (1996): Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J 15: 6290–6300.

    PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Cato, A.CB, Henderson D, and Ryffel GU (1991): Two types of antiprogestins identified by their differential action in transcriptionally active extracts from T47D cells. Nucleic Acids Res 19: 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (1974): Chromatin structure: A repeating unit of histones and DNA. Science 184: 868–871.

    Article  PubMed  CAS  Google Scholar 

  • Laurent, B.C, and Carlson M (1992): Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators Gal4 and bicoid. Genes Dev 6: 1707–1715.

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin B, Zechel C, Garnier, J.-M, Lutz Y, Tora L, Pierrat B, Heery D, Gronemeyer H, Chambon P, and Losson R (1995): The N-terminal part of TIF1, a putative mediator of ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 14: 2020–2033.

    PubMed  Google Scholar 

  • Lee, H.-L, and Archer TK (1994): Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo Mol. Cell. Biol. 14: 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, and Evans RM (1995): The nuclear receptor superfamily: The second decade. Cell 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD, Wood WI, Dolan M, Engel JD, and Felsenfeld G (1981): A 200 base pair region at the 5’ end of the chicken adult beta-globin gene is accessible to nuclease digestion. Cell 27: 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Miller ME, Cairns BR, Levinson RS, Yamamoto KR, Engel DA, and Smith MM (1996): Adenovirus ElA specifically blocks SWI/SNF-dependent transcriptional activation. Mol. Cell. Biol. 16: 5737–5743.

    PubMed  CAS  Google Scholar 

  • Montecino M, Pockwinse S, Lian J, Stein G, and Stein J (1994): DNase I hypersensitivity sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene. Biochemistry 33: 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Mymryk JS, Berard D, Hager GL, and Archer TK (1995): Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo Mol. Cell. Biol. 15: 26–34.

    PubMed  CAS  Google Scholar 

  • Mymryk, J.S, and Archer TK (1995): Dissection of progesterone receptor-mediated chromatin remodeling and transcriptional activation in vivo Genes Dev 9: 1366–1376.

    Article  PubMed  CAS  Google Scholar 

  • Nordeen SK, Kühnel B, Lawler-Heavner J, Barber DA, and Edwards DP (1989): A quantitative comparison of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Mol. Endo. 3: 1270–1278.

    Article  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, and Nakatani Y (1996): The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.

    Article  PubMed  CAS  Google Scholar 

  • Onate SA, Tsai SY, Tsai, M.-J, and O’Malley BW (1995): Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski MC, Richard-Foy H, Wolford RG, Berard DS, and Hager GL (1983): Glucocorticoid regulation of transcription at an amplified, episomal promoter. Mol. Cell. Biol. 3: 2045–2057.

    PubMed  CAS  Google Scholar 

  • Ostrowski MC, Huang AL, Kessel M, Wolford RG, and Hager GL (1984): Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus. EMBO J 3: 1891–1899.

    PubMed  CAS  Google Scholar 

  • Otten AD, Sanders MM, and McKnight GS (1988): The MMTV LTR promoter is induced by progesterone and dihydrotestosterone but not by estrogen. Mol. Endo. 2: 143–147.

    Article  CAS  Google Scholar 

  • Panganiban AT (1985): Retroviral DNA integration. Cell 42: 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Payvar F, Wrange O, Carlstedt-Duke J, Okret S, Gustafsson JA, and Yamamoto KR (1981): Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc. Natl. Acad. Sci. USA 78: 6628–6632.

    Article  PubMed  CAS  Google Scholar 

  • Perlmann T, and Wrange O (1988): Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J 7: 3073–3079.

    PubMed  CAS  Google Scholar 

  • Peterson, C.L, and Herskowitz I (1992): Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C.L, and Tamkun JW (1995): The SWI-SNF complex: A chromatin remodeling machine? Trend Biochem. Sci. 20: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Pham TA, Elliston JF, Nawaz Z, McDonnell DP, Tsai, M.-J, and O’Malley BW (1991a). Antiestrogen can establish nonproductive receptor complexes and alter chromatin structure at target enhancers. Proc. Natl. Acad. Sci. USA 88: 3125–3129.

    Article  CAS  Google Scholar 

  • Pham TA, Hwung Y, McDonnell DP, and O’Malley BW (1991b). Transactivation functions facilitate the disruption of chromatin structure by estrogen receptor derivatives in vivo J. Biol. Chem. 266: 18179–18187.

    CAS  Google Scholar 

  • Pham TA, Hwung YP, Santiso-Mere D, McDonnell DP, and O’Malley BW (1992a). Ligand-dependent and -independent function of the transactivation regions of the human estrogen receptor in yeast. Mol. Endo. 6: 1043–1050.

    Article  CAS  Google Scholar 

  • Pham TA, McDonnell DP, Tsai, M.-J, and O’Malley BW (1992b). Modulation of progesterone receptor binding to progesterone response elements by positioned nucleosomes. Biochemistry 31: 1570–1578.

    Article  CAS  Google Scholar 

  • Picard D, and Yamamoto KR (1987): Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340.

    PubMed  CAS  Google Scholar 

  • Pina B, Brüggemeier U, and Beato M (1990): Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60: 719–731.

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Bartholomew B, Persinger J, Hayes JJ, Arents G, Moudrianakis EN, and Wolfe AP (1996): An asymmetric model for the nucleosome: A binding site for linker histones inside the DNA gyres. Science 274: 614–617.

    Article  PubMed  CAS  Google Scholar 

  • Reik A, Schutz G, and Stewart AF (1991): Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: Induction leads to a reversible disruption of nucleosomes over an enhancer. EMBO J 10: 2569–2576.

    PubMed  CAS  Google Scholar 

  • Richard-Foy H, and Hager GL (1987): Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J 6: 2321–2328.

    PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, and Klug A (1984): Structure of the nucleosome core particle at 7 A resolution. Nature 311: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Rigaud G, Roux J, Pictet R, and Grange T (1991): In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67: 977–986.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, P.J, and Kelly TJ (1986): Purification of nuclear factor I by DNA recognition site affinity chromatography. J. Biol. Chem. 261: 1398–1408.

    PubMed  CAS  Google Scholar 

  • Roth, S.Y, and Allis CD (1992): Chromatin condensation: Does histone HI dephosphorylation play a role? TIBS 17: 93–98.

    PubMed  CAS  Google Scholar 

  • Scarlett, C.O, and Robins DM (1995): In vivo footprinting of an androgen-dependent enhancer reveals an accessory element integral to hormonal response. Mol. Endo. 9: 413–423.

    Article  CAS  Google Scholar 

  • Schild C, Claret, F.-X, Wahli W, and Wolffe AP (1993): A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J 12: 423–433.

    PubMed  CAS  Google Scholar 

  • Schmid E, Schmid W, Jantzen M, Mayer D, Jastorff B, and Schütz G (1987): Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur. J. Biochem. 165: 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Schütz G, Schmid W, Jantzen M, Danesch U, Gloss B, Strähle U, Becker P, and Boshart M (1986): Molecular basis for the hormonal regulation of the tyrosine aminotransferase and tryptophan oxygenase genes. Ann. NY Acad. Sci. 478: 93–100.

    Article  PubMed  Google Scholar 

  • Seyfred, M.A, and Gorski J (1990): An interaction between the 5’ flanking distal and proximal regulatory domains of the rat prolactin gene is required for transcriptional activation by estrogens. Mol. Endo. 4: 1226–1234.

    Article  CAS  Google Scholar 

  • Singh P, Coe J, and Hong W (1995): A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374: 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Archer TK, Hamlin-Green G, and Hager GL (1993): Newly expressed progesterone receptor cannot activate stable, replicated mouse mammary tumor virus templates but acquires transactivation potential upon continuous expression. Proc. Natl. Acad. Sci. USA 90: 11202–11206.

    Article  PubMed  CAS  Google Scholar 

  • Spindler SR, Crew MD, and Nyborg JK (1989): Thyroid hormone transcriptional regulatory region of the growth hormone gene. Endocrine Research 15: 475–493.

    Article  PubMed  CAS  Google Scholar 

  • Stavenhagen, J.B, and Robins DM (1988): An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Strähle U, Schmid W, and Schutz G (1988): Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7: 3389–3395.

    PubMed  Google Scholar 

  • Travers AA (1992): The reprogramming of transcriptional competence. Cell 69: 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Truss M, Bartsch J, Schelbert A, Hache, R.JG, and Beato M (1995): Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo EMBO 14: 1737–1751.

    CAS  Google Scholar 

  • Tsukiyama T, Daniel C, Tamkun J, and Wu C (1995): ISWI a member of the SWI2/ SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83: 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Usala SJ, Young WS, III, Morioka H, and Nikodem VM (1988): The effect of thyroid hormone on the chromatin structure and expression of the malic enzyme gene in hepatocytes. Mol. Endo. 2: 619–626.

    Article  CAS  Google Scholar 

  • van Holde KE (1988): Chromatin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, and Crabtree GR (1996a). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15: 5370–5382.

    CAS  Google Scholar 

  • Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, and Crabtree GR (1996b). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10: 2117–2130.

    Article  CAS  Google Scholar 

  • Weintraub H (1983): Tissue-specific gene expression and chromatin structure. Harvey Lect 79: 217–244.

    PubMed  CAS  Google Scholar 

  • Willis, S.D, and Seyfred MA (1996): Pituitary-specific chromatin structure of the rat prolactin distal enhancer element. Nucl. Acids Res. 24: 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994): Nucleosome positioning and modification: Chromatin structures that potentiate transcription. TIBS 19: 240–244.

    PubMed  CAS  Google Scholar 

  • Wolffe AP (1995): Chromatin Structure and Function London: Academic Press.

    Google Scholar 

  • Wong J, Shi YB, and Wolffe AP (1995): A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev 9: 2696–2711.

    Article  PubMed  CAS  Google Scholar 

  • Wong NC, Raymond J, and Carr FE (1993): A liver-specific nuclear protein represses transcription of the S14 in vitro and in vivo. J. Biol. Chem. 268: 19431–19435.

    PubMed  CAS  Google Scholar 

  • Workman, J.L, and Buchman AR (1993): Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem. Sci. 18: 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1980): The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286: 854–860.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KR (1985): Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19: 209–252.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga SK, Peterson CL, Herskowitz I, and Yamamoto KR (1992): Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258: 1598–1604.

    Article  PubMed  CAS  Google Scholar 

  • Young HA, Shih TY, Scolnick EM, and Parks WP (1977): Steroid induction of mouse mammary tumor virus: effect upon synthesis and degradation of viral RNA. J. Virol. 21: 139–146.

    PubMed  CAS  Google Scholar 

  • Zaret, K.S, and Yamamoto KR (1984): Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Zlatanova J, and van Holde K (1992): Histone H1 and transcription: Still an enigma? J. Cell Sci. 103: 889–895.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watson, C.E., Archer, T.K. (1998). Chromatin and Steroid-Receptor-Mediated Transcription. In: Freedman, L.P. (eds) Molecular Biology of Steroid and Nuclear Hormone Receptors. Progress in Gene Expression. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1764-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1764-0_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7271-7

  • Online ISBN: 978-1-4612-1764-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics