Skip to main content

A New Approach to the Analysis of Cardiovascular Function: Allometry

  • Chapter

Abstract

Biological tranformations that lead to structural adaptation to functional demands have been a subject of considerable interest for many decades. This is particularly true for the cardiovascular system. This is seen, for instance, in the case of cardiac hypertrophy caused by chronic pressure overload.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph EF. Quantitative relations in the physiological constitutions of mammals. Science. 1949;109:579.

    Article  PubMed  CAS  Google Scholar 

  2. Buckingham E. On physically similar systems: Ilustrations of the use of dimensional equations. Phys Rev. 1915;4:345.

    Article  Google Scholar 

  3. Burton AC. Relation of structure to function of the tissues of walls of blood vessels. Physiol Rev. 1954;34:619–642.

    PubMed  CAS  Google Scholar 

  4. Calder WA III. Scaling of physiological processes in homeothermic animals. Ann Rev Physiol. 1981;43:301.

    Article  Google Scholar 

  5. Clark AJ. Comparative Physiology of the Heart. New York: Macmillan; 1927.

    Google Scholar 

  6. DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–871.

    Article  CAS  Google Scholar 

  7. Goetz RH, Warren JV, Gauer OH, Patterson JL Jr, Doyle JT, Keen EN, McGregor M. Circulation of the giraffe. Circ Res. 1960;8:1049–1058.

    Article  PubMed  CAS  Google Scholar 

  8. Gunther B. Allometric ratios, invariant numbers, and the theory of biological similarity. Physiol Rev. 1975;55:659.

    PubMed  CAS  Google Scholar 

  9. Gunther B, Guerra B. Biological similarities. Acta Physiol Lat Am. 1955;5:169.

    PubMed  CAS  Google Scholar 

  10. Gunther B, DeLa Barra L. Physiometry of the mammalian circulatory system. Acta Physiol Lat Am. 1966;16:32.

    PubMed  CAS  Google Scholar 

  11. Gunther B, DeLa Barra L. Theories of biological similarities, non-dimensional parameters and invariant numbers. Bull Math Biophys. 1966;28:9–102.

    Article  Google Scholar 

  12. Heusner AA. Biological similitude: Statistical and functional relationships in comparative physiology. Am J Physiol. 1984;246:R839–R845.

    PubMed  CAS  Google Scholar 

  13. Holt JP, Rhode EA, Holt WW, Kines H. Geometric similarity of aorta, venae cavae, and certain of their branches in mammals. Am J Physiol. 1981;241:R100.

    PubMed  CAS  Google Scholar 

  14. Holt JP, Rhode EA, Kines H. Ventricular volumes and body weights in mammals. Am J Physiol. 1968;215:704.

    PubMed  CAS  Google Scholar 

  15. Huxley JS. Problems of Relative Growth. London: Methuen; 1932.

    Google Scholar 

  16. Juznic G, Klensch H. Vergleichende physiologische untersuchunger uber das verhalten der indices fur energieaufwand und leistung des herzens. Arch Ges Physiol. 1964;280:3845.

    Google Scholar 

  17. Kenner T. Flow and pressure in arteries. In: Biomechanics, Fung YC, Perroue N, Anliker M. eds., Englewood Cliffs, NJ: Prentice-Hall; 1972.

    Google Scholar 

  18. Kleiber M. Body size and metabolic rate. Physiol Rev. 1947;27:511–541.

    PubMed  CAS  Google Scholar 

  19. Lambert R, Teisser G. Théorie de la similitude biologique. Ann Physiol Physiocochem Biol. 1927;3:212.

    Google Scholar 

  20. Li JK-J. Arterial System Dynamics. New York: New York University Press; 1987.

    Google Scholar 

  21. Li JK-J, Melbin J, Riffle RA, Noordergraaf A. Pulse wave propagation. Circulation Res. 1981;49:442–452.

    Article  PubMed  CAS  Google Scholar 

  22. Li JK-J. A new similarity principle for cardiac energetics. Bull Math Biol. 1983;45:1005–1011.

    PubMed  CAS  Google Scholar 

  23. Li JK-J. Hemodynamic significance of metabolic turnover rate. J Theor Biol. 1983;103:333–338.

    Article  PubMed  CAS  Google Scholar 

  24. Li JK-J. Comparative cardiac mechanics: Laplace’s law. J Theor Biol. 1986;118:339–343.

    Article  PubMed  CAS  Google Scholar 

  25. Li JK-J. Time domain resolution of forward and reflected waves in the aorta. IEEE Trans Biomed Eng. 1986;BME-33:783–785.

    Article  Google Scholar 

  26. Li JK-J. Laminar and turbulent flow in the mammalian aorta: Reynolds number. J Theor Biol 1988;135:409–414.

    Article  PubMed  CAS  Google Scholar 

  27. Li JK-J, Noordergraaf A. Similar pressure pulse propagation and reflection characteristics in aortas of mammals. Am J Physiol 1991;261:R519–521.

    PubMed  CAS  Google Scholar 

  28. Li JK-J. Comparative Cardiovascular Dynamics of Mammals. Boca Raton: CRC Press; 1996.

    Google Scholar 

  29. Loiselle DS, Gibbs CL. Species differences in cardiac energies. Am J Physiol. 1979:490–498.

    Google Scholar 

  30. Martin RR, Haines H. Application of Laplace’s law to mammalian hearts. Comp Biochem Physiol. 1970;34:959.

    Article  PubMed  CAS  Google Scholar 

  31. Noordergraaf A, Li JK-J, Campbell KB. Mammalian hemodynamics: A new similarity principle. J Theor Biol. 1979;79:485.

    Article  PubMed  CAS  Google Scholar 

  32. Robard S, Williams F, Williams C. The spherical dynamics of the heart. Am Heart J. 1959;57:348–360.

    Article  Google Scholar 

  33. Rosen R. Dynamical similarity and the theory of biological transformations. Bull Math Biol. 1978;49:549.

    Google Scholar 

  34. Smith RJ. Rethinking allometry. J Theor Biol. 1980;87:97.

    Article  PubMed  CAS  Google Scholar 

  35. Stahl WR. Similarity analysis of biological systems. Persp Biol Med. 1963;6:291.

    CAS  Google Scholar 

  36. Stahl WR. The analysis of biological similarity. Adv Biol Med Phys. 1963;9:356.

    Google Scholar 

  37. Stahl WR. Organ weights in primates and other mammals. Science. 1965; 150:1039–1042.

    Article  PubMed  CAS  Google Scholar 

  38. Starling EH, Visscher MB. The regulation of the energy output of the heart. J Physiol 1926;62:243–261.

    Google Scholar 

  39. Thompson DW. On Growth and Form. London: Cambridge University Press; 1917.

    Google Scholar 

  40. White L, Haines H, Adams T. Cardiac output related to body weights in small mammals. Comp Biochem Physiol 1968;27:559–565.

    Article  Google Scholar 

  41. Woods RH. A few applications of a physical theorem to membranes in the human body in a state of tension. J Anai Physiol. 1892;26:362–370.

    CAS  Google Scholar 

  42. Yates FE. Comparative physiology: Compared to what? Am J Physiol. 1979; 237:R1.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J.KJ. (1998). A New Approach to the Analysis of Cardiovascular Function: Allometry. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics