Skip to main content

Semiparametric Bayesian Methods for Random Effects Models

  • Chapter

Part of the book series: Lecture Notes in Statistics ((LNS,volume 133))

Abstract

The linear mixed effects model with normal errors is a popular model for the analysis of repeated measures and longitudinal data. The generalized linear model is useful for data that has non-normal errors but where the errors are uncorrelated. A descendant of these two models generates a model for correlated data with non-normal errors, called the generalized linear mixed model (GLMM). Frequentist attempts to fit these models generally rely on approximate results and inference relies on asymptotic assumptions. Recent methodological and technological advances have made Bayesian approaches to this class of models feasible. Markov chain Monte Carlo methods can be used to obtain ‘exact’ inference for these models, as demonstrated by Zeger and Karim (1991). In the linear or generalized linear mixed model, the random effects are typically taken to have a fully parametric distribution, such as the normal distribution. In tins chapter, we extend the normal random effects model and the GLMM by allowing the random effects to have a nonparametric prior distribution. We do this using a Dirichlet Process prior for the general distribution of the random effects. The approach can be easily extended to more general population models. Computations for the models are accomplished using the Gibbs sampler.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin M (1996). A general maximum likelihood analysis of variance com-ponents in generalized linear models. Personal communication.

    Google Scholar 

  • Best N.G., Cowles M.K., Vines S.K. (1995). CODA: Convergence diagnostics and output analysis software for Gibbs sampling output. Version 0.3. MRC Biostatistics Unit, Cambridge.

    Google Scholar 

  • Breslow N.E., Clayton D.G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88 9–25

    Article  MATH  Google Scholar 

  • Bush C.A., MacEachern S.N. (1996). A semi-parametric Bayesian model for randomized block designs. Biometrika 83, 275–285.

    Article  MATH  Google Scholar 

  • Chen, M.H., Ibrahim, J.G., Yiannoutsos, C (1998) Prior Elicitation, Variable Selection, and Bayesian Computation for Logistic Regression Models, Journal of the Royal Statistical Society, Series B,in press.

    Google Scholar 

  • Davies R.B. (1987). Mass point methods for dealing with nuisance parameters in longitudinal studies. In Longitudinal Data Analysis (ed. R. Crouchley). Avebury, Aldershot, Hants

    Google Scholar 

  • Geweke J (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4 (eds: JM Bernardo, JO Berger, AP Dawid, and AFM Smith). Clarendon Press, Oxford.

    Google Scholar 

  • Gilks W.R., Roberts G.O. (1996). Strategies for improving MCMC. In Markov Chain Monte Carlo in Practice (eds: Gilks WR, Richardson S, and Spiegelhalter DJ). Chapman and Hall, London.

    Google Scholar 

  • Hastings W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109

    Article  MATH  Google Scholar 

  • Heckman J.J., Singer B (1984). A method for minimizing the impact of distributional assumptions in econometric models of duration. Econometrica 52 271–320

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim J.G., Laud P.W. (1994). A Predictive Approach to the Analysis of Designed Experiments. Journal of the American Statistical Association. 89, 309–319

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim, J.G., Ryan, L.M., Chen, M.H. (1998). Use of Historical Controls to Adjust for Covariates in Trend Tests for Binary Data. Journal of the American Statistical Association, to appear.

    Google Scholar 

  • Kahn JO, Lagakos S.W., Richman D.D., et al. (1992). A controlled trial comparing zidovudine with didanosine in human immunodeficiency virus infection. New England Journal of Medicine 327 581–587

    Article  Google Scholar 

  • Kleinman K.P., Ibrahim, J.G. (1998a). A Semi-parametric Bayesian Approach to the Random Effects Model. Biometrics, to appear.

    Google Scholar 

  • Kleinman K.P., Ibrahim, J.G. (1998b). A Semi-parametric Bayesian Approach to Generalized Linear Mixed Models, Statistics in Medicine, to appear.

    Google Scholar 

  • Laird N.M., Ware J.H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–974.

    Article  MATH  Google Scholar 

  • Laud P.W., Ibrahim, J.G. (1995). Predictive Model Selection, Journal of the Royal Statistical Society, Series B, 57, 247–262.

    MathSciNet  MATH  Google Scholar 

  • MacEachern S.N., Müller P. (1996). Estimating Mixture of Dirichlet process models. Personal communication.

    Google Scholar 

  • McCullagh P, Neider J.A. (1989). Generalized Linear Models (2nd ed.), London, Chapman & Hall

    MATH  Google Scholar 

  • Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E (1953) Equations of state calculations by fast computing machine. Journal of Chemical Physics 21 1087–1091

    Article  Google Scholar 

  • Nelder J.A., Wedderburn R.W.M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, Series A 135 370–384

    Article  Google Scholar 

  • Raftery A.L., Lewis S (1992). How many iterations in the Gibbs sampler? In Bayesian Statistics 4 (eds: JM Bernardo, JO Berger, AP Dawid, and AFM Smith). Clarendon Press, Oxford.

    Google Scholar 

  • Sommer A, Katz J, Tarwotjo I (1983). Increased mortality in children with vitamin A deficiency. American Journal of Clinical Nutrition 40 1090–1095

    Google Scholar 

  • Thall P.F., Vail S.C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics 46 657–671

    Article  MathSciNet  MATH  Google Scholar 

  • Verbeke G, Lesaffre E (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91 217–221

    Article  MATH  Google Scholar 

  • Wakefield J.C.. Smith A.F.M., Racine-Poon A, Gelfand A.E. (1994). Bayesian analysis of linear and non-linear population models by using the Gibbs sampler. Applied Statistics 43 201–221

    Article  MATH  Google Scholar 

  • West M, Müller P, Escobar M.D. (1994). Hierarchical priors and mixture models, with applications in regression and density estimation. In Aspects of Uncertainty: A Tribute to D. V. Lindley (eds. A. F. M. Smith, P. R. Freeman). Wiley, London

    Google Scholar 

  • Wilks W.R., Wang C.C., Yvonnet B., Coursaget P. (1993). Random effects models for longitudinal data using Gibbs sampling. Biometrics 49 441–453

    Article  Google Scholar 

  • Zeger S.L., Karim M.R. (1991). Generalized Linear Models with Random Effects: A Gibbs sampling approach. Journal of the American Statistical Association 86 79–86

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ibrahim, J.G., Kleinman, K.P. (1998). Semiparametric Bayesian Methods for Random Effects Models. In: Dey, D., Müller, P., Sinha, D. (eds) Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statistics, vol 133. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1732-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1732-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98517-6

  • Online ISBN: 978-1-4612-1732-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics