Understanding Effects of Multiple Stressors: Ideas and Challenges

  • Denise L. Breitburg
  • James W. Baxter
  • Colleen A. Hatfield
  • Robert W. Howarth
  • Clive G. Jones
  • Gary M. Lovett
  • Cathleen Wigand


Predicting and understanding the effects of multiple stressors is one of the most important challenges presently facing ecologists. Human activities expose ecological systems to a wide range of stressors, whose direct, indirect, and interactive effects can vary depending on system, species, and stressor characteristics. Understanding how multiple stressors affect natural systems will improve our ability to manage and protect these systems, as well as contribute to the understanding of fundamental ecological principles. However, a concerted effort is needed to explore this issue through experiments, modeling, and sampling conducted at a range of spatial and temporal scales, and in ways that take advantage of management-initiated as well as unintentional changes in human-influenced systems.


Striped Bass Multiple Stressor Gypsy Moth Nitrogen Deposition Anthropogenic Stressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., A. Magill, R. Boone, J.M. Melillo, P. Steudler, and R. Bowden. 1993. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts.Ecological Applications3:156–166.CrossRefGoogle Scholar
  2. Abrams, P., B.A. Menge, G.G. Mittelbach, D. Spiller, and P. Yodzis. 1996. The role of indirect effects in food webs. Pages 371–395 in G.A. Polis and K.O. Winemiller, eds.Food webs: integration of patterns and dynamics.Chapman & Hall, New York.Google Scholar
  3. Berge, J.A. 1990. Macrofauna recolonization of subtidal sediments. Experimental studies on defaunated sediment contaminated with crude oil in two Norwegian fjords with unequal eutrophication status. I. Community responses.Marine Ecology and Progress Series66:103–115.CrossRefGoogle Scholar
  4. Berge, J.A., R.G. Lichtenhtaler, and F. Orled. 1987. Hydrocarbon depuration and abiotic changes in artificially oil contaminated sediment in the subtidal.Estuarine Coastal and Shelf Science24:567–583.CrossRefGoogle Scholar
  5. DeAngelis, D.L. 1980. Energy flow, nutrient cycling, and ecosystem resilience.Ecology61:764–771.CrossRefGoogle Scholar
  6. Flavin, C. 1997. The legacy of Rio. Pages 3–22 in L.R. Brown, C. Flavin, and H. French, eds.State of the world 1997 Worldwatch Institute.W.W. Norton and Company, New York.Google Scholar
  7. Gilpin, M. The genetic effective size of a metapopulation. 1991.Biological Journal of the Linnean Society42:165–172.CrossRefGoogle Scholar
  8. Grey, G.W., and F.J. Deneke. 1986.Urban forestry. John Wiley & Sons, New York.Google Scholar
  9. Goudie, A. 1990.The human impact on the natural environment.MIT Press, Cambridge, MA.Google Scholar
  10. Gustafson, E.J., and T.R. Crow. 1994. Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism.Landscape Ecology9(4):237.CrossRefGoogle Scholar
  11. Hall, R.J., and G.E. Likens. 1981. Chemical flux in an acid-stressed stream.Nature292:329–331.CrossRefGoogle Scholar
  12. Harte, J., and R. Shaw. 1995. Shifting dominance within a montane vegetation community: results of a climate warming experiment.Science267:876–880.PubMedCrossRefGoogle Scholar
  13. Hay, M.E. 1984. Patterns of fish and urchin grazing on Caribbean coral reefs: areprevious results typical?Ecology65:446–454.CrossRefGoogle Scholar
  14. Howarth, R.W. 1991. Comparative responses of aquatic ecosystems to toxic chemical stress. Pages 169–195 in J. Cole, G. Lovett, and S. Findlay, eds.Comparative analyses of ecosystems.Springer-Verlag, New York.CrossRefGoogle Scholar
  15. Hughes, T.P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.Science265:1547–1551.PubMedCrossRefGoogle Scholar
  16. Jongman, R.H.G., C.J.F. ter Braak, and O.F.R. van Tongeren. 1995.Data analysis in community and landscape ecology.Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  17. Lessios, H.A. 1988. Mass mortality ofDiadema antillarumin the Caribbean: what have we learned?Annual Review of Ecology and Systematics19:371–393.Google Scholar
  18. Lovett, G.M., and A.E. Ruesink. 1995. Carbon and nitrogen mineralization from decomposing gypsy moth frass.Oecologia104:133–138.CrossRefGoogle Scholar
  19. McDonnell, M.J., and E.A. Roy. 1996. Vegetation dynamics of a remnant hardwoods-hemlock forest in New York City.Supplement to the Bulletin of the Ecological Society of America77:294.Google Scholar
  20. McDonnell, M.J., and S.T.A. Pickett. 1990. The study of ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology.Ecology71:1231–1237.CrossRefGoogle Scholar
  21. McDonnell, M.J., and S.T.A. Pickett. 1993.Humans as components of ecosystems.Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation.Trends in Ecology and Evolution10:58–62.PubMedCrossRefGoogle Scholar
  23. National Research Council. 1990.Forestry research: a mandate for change. National Academy Press, Washington, DC.Google Scholar
  24. Pickett, S.T.A., J. Kolasa, J.J. Armesto, and S.L. Collins. 1989. The ecological concept of disturbance and its expression at various hierarchical levels.Oikos54:129–136.CrossRefGoogle Scholar
  25. Pouyat, R.V. 1992. Soil characteristics and litter dynamics in mixed deciduous forests along an urban-rural gradient. Ph.D. dissertation, Rutgers University, New Brunswick, NJ.Google Scholar
  26. Pouyat, R.V., and M.J. McDonnell. 1991. Heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water Air and Soil Pollution57–58:57–58.CrossRefGoogle Scholar
  27. Pouyat, R.V., M.J. McDonnell, and S.T.A. Pickett. 1997. Litter and nitrogen dynam-ics in oak stands along an urban-rural gradient.Urban Ecosystems1:117–131.CrossRefGoogle Scholar
  28. Pouyat, R.V., R.W. Parmelee, and M.M. Carreiro. 1994. Environmental effects on forest soil-invertebrate and fungal densities in oak stands along an urban-rural land use gradient.Pedobiologia38:385–399.Google Scholar
  29. Riedel, G.F. 1984. Influence of salinity and sulfate on the toxicity of chromium (VI) to the estuarine diatomThalassiosira pseudonana. Journal of Phycology20:496–500.CrossRefGoogle Scholar
  30. Riedel, G.F. 1985. The relationship between chromium (VI) uptake, sulfate uptake, and chromium (VI) toxicity in the estuarine diatomThalassiosira pseudonana. Aquatic Toxicology7:191–204.CrossRefGoogle Scholar
  31. Rudnicky, J.L., and M.J. McDonnell. 1989. Forty-eight years of canopy change in a hardwood-hemlock forest in New York City.Bulletin of the Torrey Botanical Club116:52–64.CrossRefGoogle Scholar
  32. Sanders, J.G. 1979. Effects of arsenic speciation and phosphate concentration on arsenic inhibition ofSkeletonema costatum (Bacillariophyceae). Journal of Phycology15:424–428.Google Scholar
  33. Sanders, J.G., and G.F. Riedel. 1987. Control of trace element toxicity by phytoplankton. Pages131–149inJ.A. Saunders, L. Kosak-Channing, and E.E. Conneds. Recent advances in phytochemistry, vol. 21.Plenum Press, New York.Google Scholar
  34. Sanders, J.G., G.F. Riedel, and R.W. Osman. 1994. Arsenic cycling and impact in estuarine and coastal marine ecosystems. Pages289–308inJ.O. Nriagued. Arsenic in the environment part I: cycling and characterization.John Wiley & Sons, New York.Google Scholar
  35. Schindler, D.W. 1977. The evolution of phosphorus limitation in lakes.Science195:260–262.PubMedCrossRefGoogle Scholar
  36. Schindler, D.W., K.H. Mills, D.F. Malley, D.L. Findlay, J.A. Shearer, I.J. Davies, et al. 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake.Science228:1395–1401.PubMedCrossRefGoogle Scholar
  37. Schmitt, R.J., and C.W. Osenberg. 1997.Detecting ecological impacts: concepts and applications in coastal habitats.Academic Press, San Diego, CA.Google Scholar
  38. Steinberg, D.A., R.V. Pouyat, R.W. Parmalee, and P.M. Groffman. 1997. Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient.Soil Biology and Biochemistry29:427–430.CrossRefGoogle Scholar
  39. ter Braak, C.J.F., and I.C. Prentice. 1988. A theory of gradient analysis.Advances in Ecological Research18:272–327.CrossRefGoogle Scholar
  40. Tilman, D. 1996. Biodiversity: population versus ecosystem stability.Ecology77:350–363.CrossRefGoogle Scholar
  41. Turner, M.G. 1987.Landscape heterogeneity and disturbance.Springer, New York.CrossRefGoogle Scholar
  42. Wangberg, S.-A., and H. Blanck. 1990. Arsenate sensitivity in marine periphyton communities established under various nutrient regimes.Journal of Experimental Marine Biology and Ecology139:119–134.CrossRefGoogle Scholar
  43. Webb, J.R., B.J. Cosby, F.A. Deviney, K.N. Eshleman, and J.N. Galloway. 1995. Change in the acid-base status of an Appalachian catchment following forest defoliation by the gypsy moth. Water, Air, and Soil Pollution85:535–540.CrossRefGoogle Scholar
  44. Williamson, C.E., S.L. Metzgar, P.A. Lovera, and R.E. Moeller. 1997. Solar ultraviolet radiation and the spawning habitat of yellow perchPerca flavescens. Ecological Applications7:1017–1023.CrossRefGoogle Scholar
  45. White, C.S., and M.J. McDonnell. 1988. Nitrogen cycling processes and soil characteristics in an urban versus rural forest.Biogeochemistry5:243–262.CrossRefGoogle Scholar
  46. Whittaker, R.H. 1967. Gradient analysis of vegetation.Biological Reviews49: 207–264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Denise L. Breitburg
  • James W. Baxter
  • Colleen A. Hatfield
  • Robert W. Howarth
  • Clive G. Jones
  • Gary M. Lovett
  • Cathleen Wigand

There are no affiliations available

Personalised recommendations