Skip to main content

Integration of Ecophysiological and Biogeochemical Approaches to Ecosystem Dynamics

  • Chapter
Successes, Limitations, and Frontiers in Ecosystem Science

Summary

Our ability to predict the extent to which climate change will influence the composition, structure, and function of ecosystems is contingent on understanding and integrating the response of organisms across all levels of ecological organization (i.e., physiological, population, community, and ecosystem levels). The integration of ecophysiology and biogeochemistry holds promise for working across levels of ecological organization and for increasing our understanding of ecosystem dynamics. In this chapter, ecophysiology is integrated with biogeochemistry using the C cycle of terrestrial ecosystems as a primary example. The fixation, redistribution, and loss of C from terrestrial ecosystems are largely controlled by the physiological activities of plants and soil microorganisms; however, there are several key gaps in our understanding of plant and microbial ecophysiology that limit our ability to predict the response of the terrestrial C cycle to a changing climate. The most significant gap in our understanding lies belowground and centers on the physiological links among the allocation of C to the production and maintenance of fine roots, the longevity of these structures, and the extent to which the metabolism and longevity of plant roots influence substrate availability for microbial activity in soil. In this chapter, we identify how a physiologically based understanding of fine-root production, maintenance, and longevity can be used to understand ecosystem-level patterns of C allocation. We then explore the extent to which the amount, timing, and biochemistry of root-associated C inputs influence the composition and function of microbial communities in soil. Understanding the ecophysiological links between plant roots and soil microorganisms lies at the heart of understanding the belowground C budget of terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., J.M. Melillo, K.J. Nadelhoffer, J. Pastor, and R. Boone. 1991. Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forests.Ecological Applications1:118–138.

    Article  Google Scholar 

  • Agren, G.I., R.M. McMurtrie, W.J. Parton, J. Pastor, and H.H. Shugart. 1991. State-of-the-art of models of production-decomposition linkages in conifer and grassland ecosystems.Ecological Applications1:118–138.

    Article  Google Scholar 

  • Alexander, I.J., and R.I. Fairley. 1983. Effects of N fertilization on populations of fine roots and mycorrhizas in spruce humus.Plant and Soil71:49–53.

    Article  CAS  Google Scholar 

  • Behera, B., and G.H. Wagner. 1974. Microbial growth rates in glucose amended soil.Soil Science Society of America Proceedings38:591–594.

    Google Scholar 

  • Bloom, A.J., S.S. Sukrapanna, and R.L. Warner. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley.Plant Physiology99:1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Bonan, G.B. 1991. Atmosphere-biosphere exchange of carbon dioxide in boreal forests.Journal of Geophysical Research96:7301–7312.

    Article  CAS  Google Scholar 

  • Botkin, D.B., G.M. Woodwell, and N. Tempel. 1970. Forest productivity estimated from carbon dioxide uptake.Ecology51:1057–1060.

    Article  Google Scholar 

  • Burton, A.J., K.S. Pregitzer, G.P. Zogg, and D.R. Zak. 1996. Latitudinal variation in sugar maple fine root respiration.Canadian Journal of Forest Research26:1761–1768.

    Article  Google Scholar 

  • Chahal, K.S., and G.H. Wagner. 1965. Decomposition of organic matter in Sanborn field soils amended with14C glucose.Soil Science100:96–103.

    Article  CAS  Google Scholar 

  • Eissenstat, D.M., and R.D. Yanai. 1997. The ecology of root lifespan.Advances in Ecological Research27:1–60.

    Article  Google Scholar 

  • Elliott, E.T., C.V. Cole, B.C. Fairbanks, L.E. Woods, R. Bryant, and D.C. Coleman. 1983. Short-term bacterial growth, nutrient uptake, and ATP turnover in sterilized, inoculated and C-amended soil: the influence of N availability.Soil Biology and Biochemistry15:85–91.

    Article  CAS  Google Scholar 

  • Ewel, D.C., and H.L. Gholz. 1991. A simulation model of the role of belowground dynamics in a Florida pine plantation.Forest Science37:397–438.

    Google Scholar 

  • Fitter, A.H. 1987. An architectural approach to the comparative ecology of plant root systems.New Phytologist106 (supp.):61–77.

    Google Scholar 

  • Fitter, A.H., and T.R. Stickland. 1991. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species.New Phytologist118:383–389.

    Article  Google Scholar 

  • Griffin, P.M. 1972.Ecology of soil fungi.Syracuse University Press, Syracuse, New York.

    Google Scholar 

  • Harley, J.L. 1971. Fungi in ecosystems.Journal of Animal Ecology41:1–16.

    Article  Google Scholar 

  • Hernandez, E., and M.J. Johnson. 1967. Energy supply and cell yield in aerobically grown microorganisms.Journal of Bacteriology94:996–1001.

    PubMed  CAS  Google Scholar 

  • Hendrick, R.L., and K.S. Pregitzer. 1992. The demography of fine roots in a northern hardwood forest.Ecology73:1094–1104.

    Article  Google Scholar 

  • Hendrick, R.L., and K.S. Pregitzer. 1993. Patterns of fine root mortality in two sugar maple forests.Nature361:59–61.

    Article  Google Scholar 

  • Hendricks, J.J., K.J. Nadelhoffer, and J.D. Aber. 1993. Assessing the role of fine roots in carbon and nitrogen cycling.Trends in Ecology and Evolution8:174–178.

    Article  PubMed  CAS  Google Scholar 

  • Horwath, W.R., K.S. Pregitzer, and E.A. Paul. 1994.14C allocation in tree-soil systems.Tree Physiology14:1163–1176.

    PubMed  Google Scholar 

  • Ingham, E.R. 1981.Use of fluorescein diacetate for assessing functional fungal biomass in soil.Ph. D. dissertation. Colorado State University, Fort Collins.

    Google Scholar 

  • Isebrands, J.G., and N.D. Nelson.1983. Distribution of [14C1-labeled photosynthates within intensively cultured Populus clones during the establishment year.Physiologia Plantarum59:9–18.

    CAS  Google Scholar 

  • Keyes, M.R., and C.C. Grier. 1981. Above-and below-ground net production in 40year-old Douglas-fir stands on low and high productivity sites.Canadian Journal of Forest Research11:599–605.

    Article  Google Scholar 

  • Kubiske M.E. K.S. Pregitzer, C.J. Mikan, D.R. Zak, J.L. Masiasz, and J.A. Teeri. 1998. Populus tremuloides photosynthesis and crown architecture in response to elevated CO, and soil N availability.Oecologiain press.

    Google Scholar 

  • Landsberg, J.J., M.R. Kaufmann, D. Binkley, J. Isebrands, and G.G. Jarvis. 1991. Evaluating progress toward closed forest models based on fluxes of carbon, water and nutrients.Tree Physiology9:1–15.

    PubMed  Google Scholar 

  • Larcher, W. 1969. The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees.Photosynthetica3:167–198.

    CAS  Google Scholar 

  • MacDonald, N.W., D.R. Zak, and K.S. Pregitzer. 1995. Temperature effects on the kinetics of microbial respiration and the net mineralization of N and S.Soil Science Society of America Journal59:233–240.

    Article  CAS  Google Scholar 

  • Nadelhoffer, N.J., J.D. Aber, and J.M. Melillo. 1985. Fine roots, net primary production, and soil nitrogen availability: a new hypothesis.Ecology66:1377–1390.

    Article  Google Scholar 

  • Nambiar, E.K.S. 1987. Do nutrients retranslocate from fine roots?Canadian Journal of Forest Research17:913–918.

    Article  Google Scholar 

  • Parton, W.J., C.V. Cole, J.W.B. Stewart, D.S. Ojima, and D.S. Schimel. 1988. Simulating regional patterns of soil C, N, and P dynamics in the US central grasslands region.Biogeochemistry2:3–27.

    Google Scholar 

  • Pate, J.S., and D.B. Layzell. 1990. Energetics and biological costs of nitrogen assimilation. Pages 1–42 in B.J. Mifflin and P.J. Lea, eds.The biochemistry of plants: a comprehensive treatise.Academic Press, CA.

    Google Scholar 

  • Penning de Vries, F.W.T. 1975. The cost of maintenance processes in plant cells.Annals of Botany39:77–92.

    CAS  Google Scholar 

  • Pregitzer, K.S., R.L. Hendrick, and R. Fogel. 1993. The demography of fine roots in response to patches of water and nitrogen.New Phytologist125:575–580.

    Article  Google Scholar 

  • Pregitzer, K.S., D.R. Zak, P.S. Curtis, M.E. Kubiske, J.A. Teeri, and C.S. Vogel. 1995. Atmospheric CO,, soil nitrogen, and turnover of fine roots.New Phytologist129:579–585.

    Article  Google Scholar 

  • Raich, J.W., and K.J. Nadelhoffer. 1989. Belowground carbon allocation in forest ecosystems: global trends.Ecology70:1346–1354.

    Article  Google Scholar 

  • Raich, J.W., and W.H. Schlesinger. 1992. Global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus44B:81–99.

    CAS  Google Scholar 

  • Rastetter, E.B., M.G. Ryan, G.R. Shaver, J.M. Melillo, K.J. Nadelhoffer, J.E. Hobbie, et al. 1991. A general biogeochemical model describing the response of 402 D.R. Zak and K.S. Pregitzer the C and N cycles in terrestrial ecosystems to changes in CO2climate and N deposition.Tree Physiology9:101–126.

    CAS  Google Scholar 

  • Reich, P.B., C. Uhl, M.B. Walters, and D.S. Ellsworth. 1991. Leaf life-span as a determinant of leaf structure and function among 23 species in Amazonian forest communities.Oecologia86:16–24.

    Article  Google Scholar 

  • Reich, P.B., M.B. Walters, and D.S. Ellsworth. 1992. Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems.Ecological Monographs62:365–392.

    Article  Google Scholar 

  • Ringelberg, D., G.T. Townsend, K.A. DeWeerd, J.M. Suflita, and D.C. White. 1994. Detection of the anaerobic dechlorinating microorganismDesulfomonile tiedjeiin environmental matrices by its signature lipopolysaccharide branched-long-chain hydroxy fatty acids.FEMS Microbial Ecology14:9–18.

    Article  CAS  Google Scholar 

  • Running, S.W., and S.T. Gower. 1991. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamics of carbon and nitrogen budgets.Tree Physiology9:147–160.

    PubMed  CAS  Google Scholar 

  • Ryan, M.G. 1991. Effects of climate change on plant respiration.Ecological Applications1:157–167.

    Article  Google Scholar 

  • Ryan, M.G., R.M. Hubbard, S. Pongracic, R.J. Raison, and R.E. McMurtrie. 1996. Foliage, fine-root, woody-tissue and stand respiration inPinus radiatain relation to nitrogen status.Tree Physiology16:333–343.

    Article  PubMed  Google Scholar 

  • Smirnoff, N., and G.R. Stewart. 1985. Nitrate assimilation and translocation in higher plants: comparative physiological and ecological consequences.Physiologia Plantarum64:133–140.

    Article  CAS  Google Scholar 

  • Smith, J.L., and E.A. Paul. 1990. The significance of soil microbial biomass estimations. Pages 357–393 in J. Bollag and G. Stotzky, eds.Soil biochemistry.Merkel Deker, New York.

    Google Scholar 

  • Tilman, G.D. 1988.Plant strategies and the dynamics and structure of plant communities.Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Tunlid, A., and D.C. White. 1992. Biochemical analysis of biomass, community structure, nutrient status, and metabolic activity of microbial communities in soil. Pages 229–262 in J. Bollag and G. Stotzky, eds.Soil biochemistry.Mercel Dekker, New York.

    Google Scholar 

  • van Veen, J.A., J.N. Ladd, and M.J. Frissel. 1984. Modeling C and N turnover through the microbial biomass in soil.Plant and Soil75:257–274.

    Google Scholar 

  • Vestal, J.R., and D.C. White. 1989. Lipid analysis in microbial ecology.BioScience39:535–541.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, K.A., C.C. Grier, and D.J. Vogt. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus in world forests.Advances in Ecological Research15:303–377.

    Article  Google Scholar 

  • Vogt, K.A., E.E. Moore, D.J. Vogt, M.L. Redlin, and R.L. Edmonds. 1983. Conifer fine root and mycorrhizal root biomass within the forest floor of Douglas-fir stands of different ages and site productivities.Canadian Journal of Forest Research13:429–427.

    Article  Google Scholar 

  • Woodwell, G.M., and D.B. Botkin. 1970. Metabolism of terrestrial ecosystems by gas exchange techniques: the Brookhaven approach. Pages 73–85 in D. Reichle, ed.Analysis of temperate forest ecosystems.Springer-Verlag, New York.

    Google Scholar 

  • Wofsy, S.P., M.L. Goulden, J.W. Munger, S.-M. Fan, P.S. Bakwin, B.C. Daube, et al.1993. Netexchange of CO2in a mid-latitude forest.Science260:1314–1317.

    Article  PubMed  CAS  Google Scholar 

  • Zak, D.R., D. Ringelberg, K.S. Pregitzer, D.L. Randlett, D.W. White, and P.S. Curtis. 1996. Soil microbial communities beneathPopulus grandidentataMichx. growing at elevated atmospheric CO,.Ecological Applications6:257–262.

    Article  Google Scholar 

  • Zogg, G.P. 1996.Belowground carbon dynamics in northern hardwood forests:factors controlling respiration from roots and soil microorganisms. Ph.D. dissertation. University of Michigan, Ann Arbor.

    Google Scholar 

  • Zogg, G.P., D.R. Zak, A.J. Burton, and K.S. Pregitzer. 1996. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability.Tree Physiology16:719–725.

    Article  PubMed  Google Scholar 

  • Zogg, G.P., D.R. Zak, D.B. Ringelberg, N.W. MacDonald, K.S. Pregitzer, and D.C. White. 1997. Compositional and functional shifts in microbial communities related to soil warming.Soil Science Society of America Journal61:475–481.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zak, D.R., Pregitzer, K.S. (1998). Integration of Ecophysiological and Biogeochemical Approaches to Ecosystem Dynamics. In: Pace, M.L., Groffman, P.M. (eds) Successes, Limitations, and Frontiers in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1724-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1724-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98475-9

  • Online ISBN: 978-1-4612-1724-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics