Enhanced Nonlinear-Optical Responses of Disordered Clusters and Composites

  • Mark I. Stockman
  • Lakshmi N. Pandey
  • Thomas F. George
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 101)

Abstract

Clusters and nanocomposites belong to so-called nanostructured materials. Properties of such materials may be dramatically different from those of bulk materials with identical chemical composition. Confinement of atoms, electrons, phonons, electric fields, etc., in a small spatial region modifies spectral properties (shifts quantum levels, changes transition probabilities), and also changes the interaction between the constituent particles. In this paper we concentrate on an important source of the modification of properties, namely on local fields.

Keywords

Platinum Coherence Eter Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Moskovits, Surface Enhanced Spectroscopy, Rev. Mod. Phys. 57, 783 (1985).CrossRefGoogle Scholar
  2. [2]
    V.M. Shalaev and M.I. Stockman, Optical Properties of Fractal Clusters (Susceptibility, Surface Enhanced Raman Scattering by Impurities), ZhEtf 92, 509 (1987) [Translation: Sov. Phys. Jetp 65, 287 (1987)].Google Scholar
  3. [3]
    A.V. Butenko, V.M. Shalaev and M.I. Stockman, Giant Impurity Nonlinear-ities in Optics of Fractal Clusters, ZhEtf 94, 107 (1988) [translation: Sov. Phys. Jetp, 67, 60 (1988)].Google Scholar
  4. [4]
    T.A. Witten and L.M. Sander, Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon, Phys. Rev. Lett. 47, 1400 (1981).CrossRefGoogle Scholar
  5. [5]
    J.E. Sipe and R.W. Boyd, Nonlinear Susceptibility of Composite Optical Materials in the Maxwell Garnett Model, Phys. Rev. B 46, 1614 (1992).Google Scholar
  6. [6]
    G.L. Fischer, R.W. Boyd, R.J. Gehr, S.A. Jenekhe, J.A. Osaheni, J.E. Sipe and L.A. Wellerbrophy, Enhanced Nonlinear-Optical Response of Composite Materials, Phys. Rev. Lett. 74, 1871 (1995).CrossRefGoogle Scholar
  7. [7]
    V.A. Markel, L.S. Muratov and M.I. Stockman, Theory and Numerical Simulation Of The Optical Properties of Fractal Clusters, ZhEtf 98, 819 (1990) [translation: Sov. Phys. Jetp 71, 455 (1990)].Google Scholar
  8. [8]
    V.A. Markel, L.S. Muratov, M.I. Stockman, and T.F. George, Theory and Numerical Simulation of Optical Properties of Fractal Clusters, Phys. Rev. B 43, 8183 (1991).CrossRefGoogle Scholar
  9. [9]
    K. Ghosh and R. Fuchs, Spectral Theory for Two-Component Porous Media, Phys. Rev. B 38, 5222 (1988).CrossRefGoogle Scholar
  10. [10]
    R. Fuchs and F. Claro, Spectral Representation for the Polarizability of a Collection of Dielectric Spheres, Phys. Rev. B 39, 3875 (1989).CrossRefGoogle Scholar
  11. [11]
    S. Alexander, The Vibration of Fractals and Scattering From Aerogels, Phys. Rev. B 40, 7953 (1989).CrossRefGoogle Scholar
  12. [12]
    M.I. Stockman, L.N. Pandey, L.S. Muratov and T.F. George, Optical Absorption and Localization of Eigenmodes in Disordered Clusters, Phys. Rev. B 51, 185 (1995).CrossRefGoogle Scholar
  13. [13]
    V.M. Shalaev, R. Botet and A.V. Butenko, Localization of Collective Dipole Excitation on Fractals, Phys. Rev. B 48, 6662 (1993).CrossRefGoogle Scholar
  14. [14]
    M.I. Stockman, L.N. Pandey, L.S. Muratov and T.F. George, Comment on “Photon Scanning Tunneling Microscopy Images of Optical Excitations of Fractal Metal Colloid Clusters”, Phys. Rev. Lett. 75, 2450 (1995).CrossRefGoogle Scholar
  15. [15]
    M.I. Stockman, L.N. Pandey and T.F. George, Inhomogeneous Localization of Polar Eigenmodes in Fractals, Phys. Rev. B 53, 2183 (1996).CrossRefGoogle Scholar
  16. [16]
    M.I. Stockman, L.N. Pandey, L.S. Muratov and T.F. George, Giant Fluctuations of Local Optical Fields in Fractal Clusters, Phys. Rev. Lett. 72, 2486 (1994).CrossRefGoogle Scholar
  17. [17]
    M.I. Stockman, V.M. Shalaev, M. Moskovits, R. Botet, and T.F. George, Enhanced Raman Scattering by Fractal Clusters: Scale Invariant Theory, Phys. Rev. B 46, 2821 (1992).CrossRefGoogle Scholar
  18. [18]
    A.V. Karpov, A.K. Popov, S.G. Rautian, V.P. Safonov, V.V. Slabko, V.M. Shalaev and M.I. Stockman, Observation of a Wavelength-and Polarization-Selective Photomodincation of Silver Clusters, Pis’ma ZhEtf 48, 528 (1988) [Translation: Jetp Lett. 48, 571 (1988)].Google Scholar
  19. [19]
    Yu.E. Danilova, A.I. Plekhanov and V.P. Safonov, Experimental Study of Polarization-Selective Holes Burned in Absorption Spectra of Metal Fractal Clusters, Physica A 185, 61 (1992).CrossRefGoogle Scholar
  20. [20]
    D.P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V.M. Shalaev, J.S. Suh and R. Botet, Photon Scanning Tunneling Microscopy Images of Optical Excitations of Fractal Metal Colloid Clusters, D. P. Phys. Rev. Lett. 72, 4149, 1994.CrossRefGoogle Scholar
  21. [21]
    V.M. Shalaev and M.I. Stockman, Resonant Excitation and Nonlinear Optics of Fractals, Physica A 185, 181 (1992).CrossRefGoogle Scholar
  22. [22]
    A.V. Butenko, P.A. Chubakov, Yu.E. Danilova, S.V. Karpov, A.K. Popov, S.G. Rautian, V.P. Safonov, V.V. Slabko, V.M. Shalaev and M.I. Stockman, Nonlinear Optics of Metal Fractal Clusters, Z.Phys. D 17, 283 (1990).CrossRefGoogle Scholar
  23. [23]
    M.M. Murnane, H.C. Kapteyn, S.P. Gordon, J. Bokor, E.N. Glytsis and R. Falcone, Efficient Coupling of High-Intensity Subpicosecond Laser Pulses into Solids, Appl. Phys. Lett. 62, 1068 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mark I. Stockman
    • 1
  • Lakshmi N. Pandey
    • 2
  • Thomas F. George
    • 3
  1. 1.Department of Physics and AstronomyGeorgia State UniversityAtlantaUSA
  2. 2.Departments of Physics and ChemistryWashington State UniversityPullmanUSA
  3. 3.Office of the Chancellor/Departments of Chemistry and Physics and AstronomyUniversity of Wisconsin-Stevens PointStevens PointUSA

Personalised recommendations