Advertisement

Nonlinear Optics of Bound Electrons in Solids

  • Mansoor Sheik-Bahae
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 101)

Abstract

A simple, two parabolic band model is shown to give the correct bandgap scaling, dispersion, and magnitude of bound electronic optical nonlinearities in semiconductors and certain large gap dielectrics. Essential to this formalism is a generalized Kramers-Kronig transformation that unifies the optical Kerr effect (n 2) with third-order absorptive nonlinearities: two-photon absorption, Raman effect, and quadratic Stark effect. Experimental results obtained with semiconductors and dielectrics have energy band-gaps ranging from 0.7 to 11eV show remarkable agreement with this simple theory. Extensions of t his model successfully predict the nondegenerate optical Kerr effect and nonlinearities in active semiconductors.

Keywords

Nonlinear Absorption Stark Effect Nonlinear Refractive Index Dispersion Function Nonlinear Refraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Adair, L.L. Chase, and S.A. Payne, Nonlinear Refractive Index of Optical Crystals, Phys. Rev. B, 39, 3337–3350 (1989).CrossRefGoogle Scholar
  2. [2]
    M.J. LaGasse, K.K. Anderson, C.A. Wang, H.A. Haus, and J.G. Fujimuto, Femtosecond Measurements of the Nonresonant Nonlinear Index in AlGaAs, Appl. Phys. Lett. 56, 417–419 (1990).CrossRefGoogle Scholar
  3. [3]
    M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland, Dispersion and Band-gap Scaling of the Electronic Kerr Effect in Solids associated with Two-Photon Absorption, Phys. Rev. Lett.Google Scholar
  4. [4]
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, and E.W. Van Stryland, Dispersion of Bound-Electronic Nonlinear Refraction in Solids, IEEE J. Quantum Electron. QE-27, 1296–1309 (1991).CrossRefGoogle Scholar
  5. [5]
    G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, 1989Google Scholar
  6. [6]
    D.E. Spence, P.N. Kean, and W. Sibbett, Opt. Lett. 19, 4 (1991).Google Scholar
  7. [7]
    H.M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, 1985.Google Scholar
  8. [8]
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, Sensitive measurements of optical nonlinearities using a single beam, IEEE J. Quantum Electron., QE-26, 760–769 (1990).CrossRefGoogle Scholar
  9. [9]
    M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, High Sensitivity, Single Beam n 2 Measurements, Opt. Lett. 14, 955–957 (1989).CrossRefGoogle Scholar
  10. [10]
    M. Sheik-Bahae, J. Wang, E. W. Van Stryland, IEEE J. Quantum Electron. 30, 249–255 (1994).CrossRefGoogle Scholar
  11. [11]
    D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Kramers-Kronig Dispersion Relations in Nonlinear Optics, Opt. Quantum Electron., 24, 1–30 (1992).CrossRefGoogle Scholar
  12. [12]
    N. Bloembergen, Nonlinear Optics, Benjamin (1971), also S.S. Jha and N. Bloembergen, Nonlinear Optical Susceptibility in Group-IV and III-V Semiconductors, Phys. Rev. 171, 891–898 (1968).CrossRefGoogle Scholar
  13. [13]
    R.W. Hellwarth, Third-order optical susceptibilities of liquids and solids, in Progress in Quantum Electronics, Volume 5, Part 1, Pergamon Press 1977.Google Scholar
  14. [14]
    P.J. Price, Phys. Rev. 130, 1792 (1964).CrossRefGoogle Scholar
  15. [15]
    D.A.B. Miller, C.T. Seaton, M.E. Prise, and S.D. Smith, Band-gap resonant nonlinear refraction in III-V semiconductors, Phys. Rev. Lett., 47, 197–200 (1981).CrossRefGoogle Scholar
  16. [16]
    B.S. Wherrett, A.C. Walker, and F.A.P. Tooley, Nonlinear refraction for cw optical bistability, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, Eds., Academic Press., 1988.Google Scholar
  17. [17]
    B.S. Wherrett, Scaling rules for multiphoton interband absorption in semiconductors, J. Opt. Soc. Am. B, 1, 67–72 (1984)CrossRefGoogle Scholar
  18. [18]
    L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, 20, 1307–1314 (1965).MathSciNetGoogle Scholar
  19. [19]
    H.D. Jones and H. R. Reiss, Intense-field effects in solids, Phys. Rev. B. 16, 2466–2473 (1977).CrossRefGoogle Scholar
  20. [20]
    H.S. Brandi and C.B. de Araujo, Multiphoton Absorption Coefficients in Solids: a Universal Curve, J. Phys. C 16, 5929–5936 (1983).CrossRefGoogle Scholar
  21. [21]
    D.M. Volkov, Concerning a class of solution of the Dirac equation, Z. Phys. 94, 250–260 (1935).zbMATHCrossRefGoogle Scholar
  22. [22]
    T.-Y. Wu and T Ohmura, Quantum Theory of Scattering, Englewood Cliffs, NJ, Prentice Hall (1962).zbMATHGoogle Scholar
  23. [23]
    I.N. Ross, W. T. Toner, C.J. Hooker, J.R. Barr, and I. Coffey, Nonlinear properties of silica and air for picosecond ultraviolet pulses, J. Modern Opt., 37, 555–573 (1990).CrossRefGoogle Scholar
  24. [24]
    G.I. Stegeman, E.M. Wright, All-optical waveguide switching, Optical and Quantum Electronics, 22, 95–122 (1990).Google Scholar
  25. [25]
    C.T. Haltgren, E.P. Ippen, Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers, Appl. Phys. Lett. 59, 635–638 (1991). K. L. Hall, G. Lenz, E.P. Ippen, G. Raybon, Heterodyne pump-probe technique for time-domain studies of optical nonlinearities in waveguides, Opt. Lett. 17, 874-877 (1992).CrossRefGoogle Scholar
  26. [26]
    C.T. Hultgren and E.P. Ippen, Femtosecond band-edge index nonlinearities in active AlGaAs waveguides, Technical Digest of IQEC-994, paper QThG3, Optical Society of America, Anaheim, CA, May 8-13, 1994.Google Scholar
  27. [27]
    M. Sheik-Bahae and E.W. Van Stryland, Ultrafast nonlinear refraction in semiconductor laser amplifiers, Ultrafast Phenomena VIII, J.-L. Martin, A. Migus, G.A. Mourou, A.H. Zewail, Eds. Springer Verlag, Vol. 55, 426–4299 (1993).Google Scholar
  28. [28]
    M. Sheik-Bahae and E.W. Van Stryland, Ultrafast nonlinearities in semiconductor laser amplifiers, Phys. Rev. B, 50, 14171–14178 (1994)CrossRefGoogle Scholar
  29. [29]
    S.G. Lee, B.P. McGinnis, R. Jin, J. Yumoto, G. Khitrova, H. M. Gibbs, N. Peyghambarian, paper CTuC4, CLEO94 Technical Digest, pp. 55.Google Scholar
  30. [30]
    R. Binder, D. Scott, A.E. Paul, M. Lindberg, K. Henneberger, S.W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors, Phys. Rev. B, 45, 1107–1115 (1992).CrossRefGoogle Scholar
  31. [31]
    C. Aversa, J.E. Sipe, M. Sheik-Bahae, E.W. Van Stryland, Third-order optical susceptibilities in semiconductors: The two-band model, Phys. Rev. B 50, 18073–18082 (1994)CrossRefGoogle Scholar
  32. [32]
    E.W. Van Stryland, M.A. Woodall, H. Vanherzeele, and M.J. Soileau, Energy Band-gap Dependence of Two-Photon Absorption, Opt. Lett. 10, 490–492 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mansoor Sheik-Bahae
    • 1
  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations