Advertisement

Nonlinear Optics in Structures with Dimensional Confinement

  • C. Martijn De Sterke
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 101)

Abstract

The nonlinear optical properties of one dimensional periodic media (“gratings”) are discussed. In particular three aspects are highlighted: the effects of gratings on phase matching conditions in nonlinear conversion processes, how the eigenfunctions of the fields in the grating can enhance the effective nonlinearity, and, finally, effects occurring at frequencies close to the Bragg condition of the grating where the light’s group velocity can be substantially less than the speed of light in the medium without a grating.

Keywords

Phase Match Condition Bloch Function Parametric Amplification Nonlinear Schrodinger Equation Uniform Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986), Ch. 17.Google Scholar
  2. [2]
    G.P. Agrawal, Nonlinear fiber optics (Academic, San Diego, 1989).Google Scholar
  3. [3]
    R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).CrossRefGoogle Scholar
  4. [4]
    P.A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).CrossRefGoogle Scholar
  5. [5]
    V. Mizrahi, P.J. Lemaire, T. Ergodan, and W.A. Reed, “Ultraviolet-laser fabrication of ultrastrong optical-fibre gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).CrossRefGoogle Scholar
  6. [6]
    See e.g. D. Marcuse, Theory of dielectric optical waveguides, 2nd Ed. (Academic, Boston, 1991), Ch. 3.Google Scholar
  7. [7]
    J.E. Sipe, L. Poladian, and C.M. De Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).CrossRefGoogle Scholar
  8. [8]
    H. Kogelnik and C.V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).CrossRefGoogle Scholar
  9. [9]
    C.M. De Sterke and J.E. Sipe, “Gap solitons,” in Progress in Optics, Vol Xxxiii, edited by E. Wolf (North-Holland, Amsterdam, 1994), 203–260.Google Scholar
  10. [10]
    P.St.J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599 (1991).CrossRefGoogle Scholar
  11. [11]
    R.W. Boyd, Nonlinear optics (Academic, San Diego, 1992).Google Scholar
  12. [12]
    H.G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).CrossRefGoogle Scholar
  13. [13]
    C.M. De Sterke, D.G. Salinas, and J.E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).CrossRefGoogle Scholar
  14. [14]
    C.M. De Sterke, K.R. Jackson, and B.D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am B 8, 403–412 (1991).CrossRefGoogle Scholar
  15. [15]
    C.L. Tang and P.P. Bey, “Phase matching in second-harmonic generation using artificial periodic structures,” Ieee J. Quantum Electron qe-9, 9–17 (1973).CrossRefGoogle Scholar
  16. [16]
    J.P. Van Der Ziel and M. Ilegems, “Optical second harmonic generation in periodic multilayer GaAs-Al 0.3 Ga 0.7 As structures,” Appl. Phys. Lett. 28, 437–439 (1976).CrossRefGoogle Scholar
  17. [17]
    M.J. Steel and C.M. De Sterke, “Parametric amplification of short optical pulses in optical fiber Bragg gratings,” Opt. Lett. 21, 420–422 (1996).CrossRefGoogle Scholar
  18. [18]
    M.J. Steel and C.M. De Sterke, “Parametric amplification of short pulses in optical fiber Bragg gratings,” Phys. Rev. E. 54, 4271–4284 (1996).CrossRefGoogle Scholar
  19. [19]
    P.St.J. Russell and J.-L. Archambault, “Field microstructures and temporal and spatial instability of photonic Bloch waves in nonlinear periodic media,” J. Phys. Iii France 4, 2471–2491 (1994).CrossRefGoogle Scholar
  20. [20]
    M.J. Steel and C.M. De Sterke, “Continuous-wave parametric amplification in Bragg gratings,” J. Opt. Soc. Am. B 12, 2445–2452 (1995).CrossRefGoogle Scholar
  21. [21]
    C.M. De Sterke and J.E. Sipe, “Envelope function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1988).CrossRefGoogle Scholar
  22. [22]
    C.M. De Sterke and J.E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).CrossRefGoogle Scholar
  23. [23]
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic crystals (Princeton, Princeton, 1995).Google Scholar
  24. [24]
    H.G. Winful, J.H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).CrossRefGoogle Scholar
  25. [25]
    N.D. Sankey, D.F. Prelewitz, and T.G. Brown, “All-optical switching in a nonlinear periodic waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).CrossRefGoogle Scholar
  26. [26]
    H.G. Winful and G.D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).CrossRefGoogle Scholar
  27. [27]
    C.M. De Sterke and J.E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).CrossRefGoogle Scholar
  28. [28]
    W. Chen and D.L. Mills, “Gap solitons and nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).CrossRefGoogle Scholar
  29. [29]
    B.J. Eggleton, R.E. Slusher, C.M. De Sterke, P.A. Krug, and J.E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).CrossRefGoogle Scholar
  30. [30]
    A.B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).CrossRefGoogle Scholar
  31. [31]
    A.B. Aceves, J.V. Moloney, and A.C. Newell, “Theory of light-beam propagation at nonlinear interfaces,” Phys. Rev. A 39, 1809–1840 (1989).CrossRefGoogle Scholar
  32. [32]
    N.G.R. Broderick and C.M. De Sterke, “Gap soliton propagation in nonuniform gratings,” Phys. Rev E. 51, 4978–4985 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • C. Martijn De Sterke
    • 1
    • 2
  1. 1.School of PhysicsUniversity of SydneyAustralia
  2. 2.Australian Photonics Cooperative Research CentreEveleighAustralia

Personalised recommendations