Energy and Thickness of Knots*

  • Jonathan Simon
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 103)

Abstract

Knots in real physical systems, be they rope or DNA loops, have real physical properties; that is a truism. The behavior of physical knots depends on the topological types of the knots; that is an experimental observation. Mathematical differences between knot types and, more generally, the whole body of knot theory should help explain the physical behavior; that is a hope. If we make the three simplest knots out of similar “rope” having the same lengths Figure 1, we see that one kind of knot seems more “tight” or “compact” than another. Somehow this difference will manifest itself in physical systems and should be predictable from the topology.

Keywords

Vortex Manifold Recombination Agarose Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ad]
    C. Adams. B. Brennan, D. Greilsheimer and A. Woo, Stick numbers and compositions of knots and links, J. Knot Theory and its Ramif., to appear.Google Scholar
  2. [B]
    G. Buck, On the energy and length of a knot, Talk in Special Session on Physical Knot Theory, Amer. Math. Soc.. Iowa City, March 1996.Google Scholar
  3. [B3]
    G. Buck, Random knots and energy: elementary consideration, J. Knot Theory and its Ramif. 3 (1994) (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).Google Scholar
  4. [B01]
    G. Buck and J. Orloff, A simple energy function for knots, Topology and its Appl. 61 (1995), 205–214.MathSciNetCrossRefMATHGoogle Scholar
  5. [B02]
    G. Buck and J. Orloff, Computing canonical conformations of knots, Topology and its Appl. 51 (1993), 246–253.MathSciNetGoogle Scholar
  6. [Br]
    K. Brakke (further devel, by J. Sullivan),SURFACE EVOLVER, Geometry Center University of Minnesota, http://www.geom.urnri.edu/software
  7. [BS]
    G. Buck and J. Simon, Knots as dynamical systems, Topology and its Appl. 51 (1993), 229–246.MathSciNetCrossRefMATHGoogle Scholar
  8. [BS2]
    G. Buck and J. Simon, Energy and length of knots, Lectures at Knots ‘86, Proc. of summer 1996 Intl. Conf., Tokyo, S. Suzuki (ed.), World Scientific Publ. (1997), 219–234.Google Scholar
  9. [BS3]
    G. Buck and J. Simon, Thickness and crossing number of knots, announced in preceding conf., to appear, Topology and its Applications.Google Scholar
  10. [Cr]
    N.J. Crisona, R. Kanaar, T.N. Gonzales, E.L. Zechiedrich, E.L. Klippei., and N.R. Cozzarelli, Processive recombination by wild-type Gin and an enhancer-independent mutant. Insight into the mechanisms of recombination and strand exchange, J. Mol. Biol. 243 (1994), 437–457.CrossRefGoogle Scholar
  11. [Dia]
    Y. DiaoMinimal knotted polygons on the cubic lattice, J. Knot Theory and its Ramif. 2 (1993), 413–425.MathSciNetCrossRefMATHGoogle Scholar
  12. [DC]
    P. Dröge and N.R. CozzarelliRecombination of knotted substrates by Tn3 resolvent, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 6062 6066.CrossRefGoogle Scholar
  13. [DC2]
    P. Dröge and N.R. Cozzarelli, Topological structure of DNA knots and cat manes, Methods in Enzymology 212 (1992), 120–130.CrossRefGoogle Scholar
  14. [De]
    F.B. Dean, A. Stastak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by escherichia colo topoisomerase I, J. Biol. Chem. 260 (1985), 4975–4983.Google Scholar
  15. [Deg]
    T. Deguchi and K. Tsurusaki, A statistical study of random knotting using the Vassiliev invariants, J. Knot Theory and its Ramif. 3 (1994), 321–353 (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).Google Scholar
  16. [DEJ]
    Y. Diao, K. Ernst, and E.J.J. Vanrensburg, Energies of knots (preprint, 3/95); Knot energies by ropes (preprint 4/96).Google Scholar
  17. [Di]
    D. Dichmann, Y. Li, and J.H. Maddocks, Hamiltonian formulations and symmetries in rod mechanics,Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 1MA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,71–113.Google Scholar
  18. [DPS]
    Y. Diao, N. Pippenger, and D.W. Sumners, On random knots,J. Knot Theory and its Ramif, 3 (1994) (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).Google Scholar
  19. [DSKC]
    F.B. Dean, A. Stasiak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by escherichia coli topoisomerase I, J. Biological Chemistry 260 (1985), 4975–4983.Google Scholar
  20. [FHW]
    M. Freedman, Z.-X. He, and Z. WangMains energy of knots and unknots, Annals of Math. 139 (1994), 1–50.MathSciNetCrossRefMATHGoogle Scholar
  21. [FW]
    H.L. Frisch and E. VvassermanChemical topology, J. Am. Chem. Soc. 83 (1961), 3789–3795.CrossRefGoogle Scholar
  22. [Fu]
    S. Fukuhara, Energy of a knot, A Fete of Topology: Papers Dedicated to Itiro Tamura (Y.T. Matsumoto and S. Morita, ed.), Academic Press, New York, 1988,443–451.Google Scholar
  23. [G]
    M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1–147 (see p. 113).MathSciNetMATHGoogle Scholar
  24. [Fle]
    J.E. Hearst and Y. Shi, The elastic rod provides a model for DNA and its functions, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schuhen, and D.W. Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,59–70.Google Scholar
  25. [Hg]
    M. Huang, Univ. Illinois-Chicago,http://www.eecs.uic.eduk- mhuang/research.html, Program for visualizing and energy minimizing knots.
  26. [Hu]
    K. Hunt, KED, University of Iowa,http://www.csaiiowa.edubhunti, Program for visualizing, manipulating, and energy minimizing polygonal knots.
  27. [JvW]
    E.J. Janse Van Rensburg, Lattice invariants for knots, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,11–20.Google Scholar
  28. [JOS]
    E.J. Janse Van Rensburg, E. Orlandini, D.W. Sumners, M.C. Test and S. Whittington, Topology and geometry of biopolymers, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Surnners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,21–37.Google Scholar
  29. [JW]
    E.J. Janse Van Rensburg and S. Whittington, The dimensions of knotted polygons, J. Phys. A: Math. Gen. 24 (1991), 3935–3948.CrossRefGoogle Scholar
  30. [JW2]
    E.J. Janse Van Rensburg and S. Whittington, The knot probability in lattice polygons, J. Phys. A: Math. Gen 23 (1990), 3573–3590.CrossRefMATHGoogle Scholar
  31. [JW3]
    E.J. Janse Van Rensburg and S. Whittington, The BFACF algorithm and knotted polygons, J. Phys. A: Math. Gen. 24 (1991), 5553–5567.CrossRefMATHGoogle Scholar
  32. [Jin]
    G.T. Jin and H.S. Kim, Polygonal knots, Jour. Korean Math. Soc. 30 (1993), 371–383.MathSciNetMATHGoogle Scholar
  33. [Jin2]
    G.T. Jin, Polygon indices and superbridge indices of torus knots and links, preprint 3/96.Google Scholar
  34. [Ketc]
    R. Kanaar, A. Kuppel, E. Shekhtman, J.M. Dungan, R. Kahmann and N.R. Cozzarelli, Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action, Cell 62 (1990), 353–366.CrossRefGoogle Scholar
  35. [KB]
    V. Katritch, J. Bednar, D. Mtchoud, R. Scharein, J. Dubochet and A. Stasiak, Geometry and physics of knots, Nature 384, Nov. 1996, 142–144.MathSciNetCrossRefGoogle Scholar
  36. [KS]
    R. Kusner and J. Sullivan, McIbius energies for knots and links, surfaces and manifolds, Geometry Center Research Report GCG64 (1993 rev. 1994), University of Minnesota, to appear in Proc. of 1993 Georgia Top. Cord..Google Scholar
  37. [Ku]
    N. Kuiper, pers. corresp. with J. O’Hara, see [02] /oc cit. Google Scholar
  38. [L]
    R. Litherland, Thickness of knots, Talk in Workshop on 3-Manifolds, Univ. Tennessee, 1992.Google Scholar
  39. [L2]
    R. Litherland, J. Simon, and O. Durumeric, Thickness of knots,Talk in AMS Special Session on Physical Knot Theory, Iowa City, 3/96.Google Scholar
  40. [LCJ]
    H.A. Lim, M.T. Carroll, and E.J. Janse Van Rensburg, Electrophoresis of knotted DNA in a regular and a random electrophoretic medium, Biomedical Modeling and Simulation (J. Eisenfeld, D.S. Levine and M. Witten, ed.), Elsevier Science Pub., 1992,213–223.Google Scholar
  41. [Le]
    S.D. Levene and H. Tsen, Analysis of DNA knots and catenanes by agarosegel electrophoresis, Protocols in DNA Topology and Topoisomerases, vol. I (M. Bjornsti and N. Osheroff, ed.), Humana Press, 1996.Google Scholar
  42. [LJ]
    H.A. Lim and E.J. Janse Van Rensburg, A numerical simulation of electrophoresis of knotted DNA, Supercomputer Computations Research Inst. Report FSU-SCRI-91–163 (1991).Google Scholar
  43. [Lo]
    S. Lomonaco, The modern legacies of Thompson’s atomic vortex theory in classical electrodynamics, The Interface of Knots and Physics (L. Kauffman, ed.), (AMS Short Course, Jan. 1995), American Mathematical Society, 1996,145 166.Google Scholar
  44. [LSDR]
    R. Litherland, J. Simon, O. Durumeric, and E. Rawdon, Thickness of knots (based on [L,Sil]), to appear in Topology and its Applic.Google Scholar
  45. [Me]
    M. Meissen,Polygon knot table, University of Iowa,http://www.math.uiowa.edu/~meissen/PLKnotTable.html.
  46. [MS]
    K.C. Millett and D.W. Sumners(eds), Random Knotting and Linking, World Scientific, 1994.Google Scholar
  47. [Mo]
    H.K. Moffatt, The energy spectrum of knots and links, Nature 347, Sept. 1999,367–369.CrossRefGoogle Scholar
  48. [O1]
    J. O’hara, Energy of a knot, Topology 30 (1991), 241–247.MathSciNetCrossRefMATHGoogle Scholar
  49. [O2]
    J. O’hara, Family of energy functionals of knots, Topology Appl. 48 (1992), 147–161.MathSciNetCrossRefMATHGoogle Scholar
  50. [O3]
    J. O’hara, Energy functionals of knots, Topology-Hawaii (K. H. Doverman), (Proc. of 1991 Conference), World Scientific, 1992,201–214 (Computer program by K. Ahara).Google Scholar
  51. [O4]
    J. O’hara, Energy functionals of knots II, Topology and its Appl. 56 (1994), 45–61.MathSciNetCrossRefMATHGoogle Scholar
  52. [Ol]
    W. Olson, T. Westcott, J. Martino, G-H Liu, Computational studies of spatially constrained DNA, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schuhen, and D W Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,195–217.Google Scholar
  53. [Pi]
    N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.MathSciNetCrossRefMATHGoogle Scholar
  54. [R]
    R. Randell, An elementary invariant of knots, J. Knot Theory and its Ramif. 3 (1994), 279–286 (reprinted in book Random Knotting arid Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).Google Scholar
  55. [Rwl]
    E. Rawdon, The thickness page, University of Iowa,http://www.math.uiowa.edu/rawdon/thick.html Preliminary data on program for finding thickest knots.
  56. [Rw2]
    E. Rawdon, Thickness of Polygonal Knots, Ph.D. Thesis, University of Iowa, August 1997.Google Scholar
  57. [Ry]
    B.Y. Rybenkov, N.R. Cozzarelli, and A.V. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Nat. Acad. Sci. 90 (1993), 5307–5311.CrossRefGoogle Scholar
  58. [S]
    T. Schlick, Pursuing Laplace’s vision on modern computers, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Summers, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996, 219–247’.Google Scholar
  59. [Sc]
    R. Scharein, Knot-Plot,Univ. British Columbia, http://www.cs.ubc.ca/spider/sdiareini Program for drawing, visualizing, manipulating, and energy minimizing knots.
  60. [Si1]
    J. Simon, Thickness of Knots, Talk in Special Session on Knotting Phenomena in the Natural Sciences, American Mathematical Society, Santa Barbara, Nov. 1991; Lecture Notes on Physical Knot Theory (notes by H. Naka), 1993, from summer 1991 course, Kwansei Gakuin University.Google Scholar
  61. [Si2]
    J. Simon, Energy functions for polygonal knots, J. Knot Theory and its Ramif. 3 (1994), 299–320 (reprinted in book Random Knotting and Linking, K.C. Millet t and D.W. Sumners (eds), World Scientific, 1994).Google Scholar
  62. [Si3]
    J. Simon, Energy functions for knots: beginning to predict physical behavior, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D W Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer- Verlag, 1996,39–58.Google Scholar
  63. [Si4]
    J. Simon, papers available by anonymous ftp,http://www.nriath.uiowa.eduhjsimon/README.html.ISSCI S. Spengler
  64. [SSC]
    A. Stasiak, and N.R. Cozzarelli, The stereostructure of knots and catenanes produced by phage A integrative recombination: implications for mechanism and DNA structure, Cell 42 (1985), 325–334.CrossRefGoogle Scholar
  65. [SK]
    A. Stasiak, V. Katritch, J. Bednar, D. Michoud, and J. Dubochet, Electrophoretic mobility of DNA knots, Nature 384, Nov. 1996,122.MathSciNetCrossRefGoogle Scholar
  66. [St]
    A. Stasiak, Ideal forms of knots, Talk in Special Session on Physical Knot Theory, Amer. Math. Soc., Iowa City, March 1996 (Revised paper to appear Dec. 96 Nature).Google Scholar
  67. [SuW]
    D.W. Sumners and S. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.MathSciNetCrossRefMATHGoogle Scholar
  68. [SW]
    S.Y. Shaw and J.C. Wang, Knotted DNA rings: probability of formation and resolution of the two chiral trefoils, Science 260 (1993), 533–536.CrossRefGoogle Scholar
  69. [SW2]
    S.Y. Shaw and J.C. Wang, DNA knot formation in aqueous solutions, J. Knot Theory and its Ramif. 3 (1994), 287–298.MathSciNetCrossRefMATHGoogle Scholar
  70. [Ta]
    M. Tabor and I. Klapper, Dynamics of twist and writhe and the modelingof bacterial fibers, Mathematical Approach to Biomolecular Structure and Dynamics (J.R Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 IMA Sununer Program on Molecular Biology, IMA Volume no, 82, Springer-Verlag, 1996,139–159.Google Scholar
  71. [VLF]
    A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii and V.V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Soy. Phys.-JETP 39 (1974), 1059–1063.MathSciNetGoogle Scholar
  72. [Was]
    E. Wasserman, Chemical Topology, Scientific American 207(5) (1962), 94–102.CrossRefGoogle Scholar
  73. [WC]
    S. Wasserman and N.R. Cozzarelli, Supercoiled DNA-directed knotting by T4 topoisomerase, J. Biol. Chem. 266 (1991), 73–95.Google Scholar
  74. [Wu]
    Y.-Q. Wu, Ming,University of Iowa, http://www.math.uiowa.edu/~wu/, Program for visualizing, manipulating, and energy minimizing polygonal knots.

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Jonathan Simon
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations