Skip to main content

Nets, (t, s)-Sequences, and Algebraic Geometry

  • Chapter
Random and Quasi-Random Point Sets

Part of the book series: Lecture Notes in Statistics ((LNS,volume 138))

Abstract

The star discrepancy is a classical measure for the irregularity of distribution of finite sets and infinite sequences of points in the s-dimensional unit cube P = [0, 1]8. Point sets and sequences with small star discrepancy in I8 are informally called low-discrepancy point sets, respectively low-discrepancy sequences, in I. It is also customary to speak of sets, respectively sequences, of quasirandom points in 78. Such point sets and sequences play a crucial role in applications of numerical quasi-Monte Carlo methods. In fact, the efficiency of a quasi-Monte Carlo method depends to a significant extent on the quality of the quasirandom points that are employed, i.e., on how small their star discrepancy is. Therefore, it is a matter of considerable interest to devise techniques for the construction of point sets and sequences with as small a star discrepancy as possible. The reader who desires more background on discrepancy theory and quasi-Monte Carlo methods is referred to the books of Hua and Wang [9], Kuipers and Niederreiter [10], and Niederreiter[21], the survey article of Niederreiter [16], and the recent monograph of Drmota and Tichy [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Adams and B.L. Shader, A construction for (t, m, s)-nets in base q, SIAM J. Discrete Math. 10, 460–468 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. A.T. Clayman, K.M. Lawrence, G.L. Mullen, H. Niederreiter, and N.J.A. Sloane, Updated tables of parameters of (t,m, s)-nets, J. Combinatorial Designs, to appear.

    Google Scholar 

  3. A.T. Clayman and G.L. Mullen, Improved (t, m, s)-net parameters from the Gilbert-Varshamov bound, Applicable Algebra Engrg. Comm. Comp. 8, 491–496 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications,Lecture Notes in Math., Vol. 1651, Springer, Berlin, 1997.

    Google Scholar 

  5. Y. Edel and J. Bierbrauer, Construction of digital nets from BCHcodes, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 221–231, Springer, New York, 1997.

    Google Scholar 

  6. H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41, 337–351 (1982).

    MathSciNet  MATH  Google Scholar 

  7. A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Information Theory 41, 1548–1563 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  8. D.R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189, 77–91 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  9. L.K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer, Berlin, 1981.

    MATH  Google Scholar 

  10. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.

    MATH  Google Scholar 

  11. G. Larcher, H. Niederreiter, and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration, Monatsh. Math. 121, 231–253 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Larcher and W.Ch. Schmid, Multivariate Walsh series, digital nets and quasi-Monte Carlo integration, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.S. Shiue, eds.), Lecture Notes in Statistics, Vol. 106, pp. 252–262, Springer, New York, 1995.

    Google Scholar 

  13. K.M. Lawrence, Construction of (t,m, s)-nets and orthogonal arrays from binary codes, Finite Fields Appl., to appear.

    Google Scholar 

  14. K.M. Lawrence, A. Mahalanabis, G.L. Mullen, and W.Ch. Schmid, Construction of digital (t, m, s)-nets from linear codes, Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 189–208, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  15. G.L. Mullen, A. Mahalanabis, and H. Niederreiter, Tables of (t, m,s)-net and (t, s)-sequence parameters, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lecture Notes in Statistics, Vol. 106, pp. 58–86, Springer, New York, 1995.

    Google Scholar 

  16. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, 957–1041 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104, 273–337 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30, 51–70 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Niederreiter, Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes, Discrete Math. 106/107 361–367 (1992).

    Article  MathSciNet  Google Scholar 

  20. H. Niederreiter, Constructions of low-discrepancy point sets and sequences, Sets,Graphs and Numbers (Budapest, 1991), Colloquia Math. Soc. János Bolyai, Vol. 60, pp. 529–559, North-Holland, Amsterdam, 1992.

    Google Scholar 

  21. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  22. H. Niederreiter and C.P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72, 281–298 (1995).

    MathSciNet  MATH  Google Scholar 

  23. H. Niederreiter and C.P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2, 241–273 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Niederreiter and C.P. Xing, Quasirandom points and global function fields, Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 269–296, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  25. H. Niederreiter and C.P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places Acta Arith. 79, 59–76 (1997).

    MathSciNet  MATH  Google Scholar 

  26. H. Niederreiter and C.P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81, 81–100 (1997).

    MathSciNet  MATH  Google Scholar 

  27. H. Niederreiter and C.P. Xing, The algebraic-geometry approach to low-discrepancy sequences, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 139–160, Springer, New York, 1997.

    Google Scholar 

  28. H. Niederreiter and C.P. Xing, Algebraic curves over finite fields with many rational points, Proc. Number Theory Conf. (Eger, 1996), W. de Gruyter, Berlin, to appear.

    Google Scholar 

  29. H. Niederreiter and C.P. Xing, Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound, Math. Nachr., to appear.

    Google Scholar 

  30. H. Niederreiter and C.P. Xing, Global function fields with many rational places and their applications, Proc. Finite Fields Conf. (Waterloo, 1997), submitted.

    Google Scholar 

  31. H. Niederreiter and C.P. Xing, Curve sequences with asymptotically many rational points, preprint, 1997.

    Google Scholar 

  32. H. Niederreiter and C.P. Xing, A general method of constructing global function fields with many rational places, Algorithmic Number Theory (Portland, 1998), Lecture Notes in Computer Science, Springer, Berlin, to appear.

    Google Scholar 

  33. W.Ch. Schmid, (t, m., s)-nets: digital construction and combinatorial aspects, Dissertation, University of Salzburg, 1995.

    Google Scholar 

  34. W.Ch. Schmid, Shift-nets: a new class of binary digital (t, m, s)-nets, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 369–381, Springer, New York, 1997.

    Google Scholar 

  35. W.Ch. Schmid and R. Wolf, Bounds for digital nets and sequences, Acta Arith. 78, 377–399 (1997).

    MathSciNet  MATH  Google Scholar 

  36. J.-P. Serre, Rational Points on Curves over Finite Fields, Lecture Notes, Harvard University, 1985.

    Google Scholar 

  37. I.M. Sobol’, The distribution of points in a cube and the approximate evaluation of integrals (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 7, 784–802 (1967).

    MathSciNet  Google Scholar 

  38. S. Srinivasan, On two-dimensional Hammersley’s sequences, J. Number Theory 10, 421–429 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

    MATH  Google Scholar 

  40. S. Tezuka, Polynomial arithmetic analogue of Halton sequences, ACM Trans. Modeling and Computer Simulation 3, 99–107 (1993).

    Article  MATH  Google Scholar 

  41. S. Tezuka and T. Tokuyama, A note on polynomial arithmetic analogue of Halton sequences, ACM Trans. Modeling and Computer Simulation 4, 279–284 (1994).

    Article  MATH  Google Scholar 

  42. G. van der Geer and M. van der Vlugt, Tables for the function N q (g), preprint, 1997.

    Google Scholar 

  43. G. van der Geer and M. van der Vlugt, Constructing curves over finite fields with many points by solving linear equations, preprint, 1997.

    Google Scholar 

  44. G. van der Geer and M. van der Vlugt, Generalized Reed-Muller codes and curves with many points, preprint, 1997.

    Google Scholar 

  45. C.P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73, 87–102 (1995).

    MathSciNet  MATH  Google Scholar 

  46. T. Zink, Degeneration of Shimura surfaces and a problem in coding theory, Fundamentals of Computation Theory (L. Budach, ed.), Lecture Notes in Computer Science, Vol. 199, pp. 503–511, Springer, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niederreiter, H., Xing, C. (1998). Nets, (t, s)-Sequences, and Algebraic Geometry. In: Hellekalek, P., Larcher, G. (eds) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1702-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1702-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98554-1

  • Online ISBN: 978-1-4612-1702-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics