Green’s function, lattice sums and rayleigh’s identity for a dynamic scattering problem

  • R. C. McPhedran
  • N. A. Nicorovici
  • L. C. Botten
  • Bao Ke-Da
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 96)


We have recently exhibited expressions for Green’s functions for dynamic scattering problems for gratings and arrays, expressed in terms of lattice sums. We have also discussed new ways to evaluate these sums, and how their use in Green’s function forms leads naturally to Rayleigh identities for scattering problems. These Rayleigh identities express connections between regular parts of wave solutions near a particular scatterer, and irregular parts of the solution summed over all other scatterers in a system. Here, we will discuss these ideas and techniques in the context of the problem of the scattering of a scalar wave by a singly-, doubly-and triply-periodic lattices of perfectly conducting obstacles. We will discuss expressions for lattice sums which can be integrated arbitrarily-many times to accelerate convergence, computationally-efficient Green’s function forms, and the appropriate Rayleigh identities for these problems. We will also discuss the long-wavelength limit, in which the dynamic identity tends to the static identity in a mathematically-interesting way.


Helmholtz Equation Reciprocal Lattice Neumann Series Spherical Bessel Function Poisson Summation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lord Rayleigh, Philos. Mag. 34, 481 (1892).zbMATHCrossRefGoogle Scholar
  2. [2]
    I. Runge, Z. Tech. Phys. 6, 61 (1925).Google Scholar
  3. [3]
    R.C. McPhedran and D.R. Mckenzie, Proc. R. Soc. Lond. A 359, 45 (1978).CrossRefGoogle Scholar
  4. [4]
    D.R. Mckenzie, R.C. McPhedran and G.H. Derrick, Proc. R. Soc. Load. A 362, 211 (1978).CrossRefGoogle Scholar
  5. [5]
    W.T. Perrin, D.R. Mckenzie and R.C. McPhedran, Proc. R. Soc. Load. A 369, 207 (1979).CrossRefGoogle Scholar
  6. [6]
    R.C. McPhedran and D.R. Mckenzie, Appl. Phys. 23, 223 (1980).CrossRefGoogle Scholar
  7. [7]
    N.A. Nicorovici, R.C. McPhedran and G.W. Milton, Proc. R. Soc. Load. A 442, 599 (1993).CrossRefGoogle Scholar
  8. [8]
    R.C. McPhedran and D.H. Dawes, J. Electromagn. Waves Appl. 6, 1327 (1992).Google Scholar
  9. [9]
    S.K. Chin, N.A. Nicorovici and R.C. McPhedran, Phys. Rev. E 49, 4590 (1994).CrossRefGoogle Scholar
  10. [10]
    L.C. Botten, R.C. McPhedran and N.A. Nicorovici, Diffraction of Off-Axis Plane Waves by Thick Capacitive Grids, Progress in Electromagnetic Research Symposium Proceedings, (PIERS’94).Google Scholar
  11. [11]
    N.A. Nicorovici, R.C. McPhedran and Bao Ke-Da, Phys. Rev. E 51, 690 (1995).CrossRefGoogle Scholar
  12. [12]
    P.P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).zbMATHGoogle Scholar
  13. [13]
    N.A. Nicorovici, R.C. McPhedran and R. Petit, Phys. Rev. E 49, 4563 (1994).CrossRefGoogle Scholar
  14. [14]
    N.A. Nicorovici and R.C. McPhedran, Phys. Rev. E 50, 3143 (1994).CrossRefGoogle Scholar
  15. [15]
    J. Yardley, N.A. Nicorovici and R.C. McPhedran, Green’s Function and Lattice Sums for the Electromagnetic Scattering by Arrays of Elliptical Cylinders, in preparation for submission to Phys. Rev. E.Google Scholar
  16. [16]
    R.C. McPhedran and A.B. Mochvan, J. Mech. Phys. Solids 42, 711 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    A.B. Mochvan, N.A. Nicorovici and R.C. McPhedran, Green’s Tensors and Lattice Sums for Elastostatics and Elastodynamics, Proc. R. Soc. Lond. A 453, 643 (1997).CrossRefGoogle Scholar
  18. [18]
    D. Felbacq, G. Tayeb and D. Maystre, J. Opt. Soc. Am. A 11, 2526 (1994).MathSciNetCrossRefGoogle Scholar
  19. [19]
    K.M. Lo, R.C. McPhedran, I.M. Basett and G.W. Milton, IEEE J. Lightwave Techaol. 12, 396 (1994).CrossRefGoogle Scholar
  20. [20]
    R. Petit, in Electromagnetic Theory of Gratings, Topics in Current Physics 22, ( Springer-Verlag, Berlin, 1980 ).Google Scholar
  21. [21]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, ( Dover, New York, 1972 ).zbMATHGoogle Scholar
  22. [22]
    F. Oberhettinger, Fourier Expansions, ( Academic, New York, 1973 ).zbMATHGoogle Scholar
  23. [23]
    D.S. Jones, Generalized Functions, ( McGraw-Hill, London, 1966 ).Google Scholar
  24. [24]
    G.N. Watson, A treatise on the theory of Bessel functions, ( Cambridge University Press, Cambridge, 1980 ).Google Scholar
  25. [25]
    J. Helsing, J. Mech. Phys. Solids 42, 1123 (1994).zbMATHCrossRefGoogle Scholar
  26. [26]
    C.L. Berman and L. Greengard, A renormalization method for the evaluation of lattice sums, J. Math. Phys. 35, 6036 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    C. Kittel, Introduction to solid state physics, ( Wiley, New York, 1986 ).Google Scholar
  28. [28]
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).zbMATHCrossRefGoogle Scholar
  29. [29]
    M.E. Rose, Elementary theory of angular momentum, ( Wiley, New York, 1957 ).zbMATHGoogle Scholar
  30. [30]
    B.U. Felderhof and R.B. Jones, J. Math. Phys. 28, 836 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematics and Its Applications 4, ( Addison-Wesley, Reading, Mass., 1977 ).Google Scholar
  32. [32]
    P.M. Morse and H. Feshbach, Methods of Theoretical Physics, ( McGraw-Hill, New York, 1953 ).zbMATHGoogle Scholar
  33. [33]
    W.K. H. Panofsky and M. Phillips, Classical electricity and magnetism, 2nd edition, ( Addison-Wesley, Reading, Mass., 1962 ).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. C. McPhedran
    • 1
  • N. A. Nicorovici
    • 1
  • L. C. Botten
    • 2
  • Bao Ke-Da
    • 3
  1. 1.Department of Theoretical PhysicsSchool of Physics, University of SydneyAustralia
  2. 2.School of Mathematical SciencesUniversity of Technology SydneyAustralia
  3. 3.Department of PhysicsPeking UniversityBeijingPeople‘s Republic of China

Personalised recommendations