Abstract
In many cases, boundary value problems on a domain Ω can be rewritten as integral equations on the boundary of Ω. The discretization of this integral equation leads to a system of linear equations with a dense coefficient matrix of dimension N. In this paper, we will present the panel clustering algorithm which avoids the generation of the N 2 matrix entries by representing the integral operator on the discrete level by only О (N logk N) quantities. Thus, a matrix vector multiplication as a basic step in every iterative solver can be performed by О(N logk N) operations. This method can be applied to all kinds of integral equations discretized by, e.g., the Nyström, the collocation or the Galerkin method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Brandt, Multilevel computations of integral transforms and particle interactions with oscillatory kernels, In IMACS 1st Int. Conf. On Corp. Phys., Boulder, Colorado, June 1990.
J. Elschner, The Double Layer Potential Operator over Polyhedral Domains I: Solvability in Weighted Sobolev Spaces. Appl. Anal., 45: 117–134, 1992.
M. Guiggiani, Direct Evaluation of Hypersingular Integrals in 2D BEM, In W. Hackbusch, editor, Proc. Of 7th GAMM Seminar on Numerical Techniques for BEM, Kiel 1991, pages 23–34, Braunschweig, 1991, Vieweg.
M. Guiggiani and A. Gigante, A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method, ASME J. Appl. Mech., 57:907–915.
W. Hackbusch, Integralgleichungen, Teubner, Stuttgart, 1989, (engl. transi.: Integral Equations Birkhänser, ISNM, Vol 120, 1995.)
W. Hackbusch, The Solution of Large Systems of BEM Equations by the Multi-Grid and Panel Clustering Technique, Rend. Sem. Mat. Uni. Pol. Torino, Fasc. Spec.: Numerical Methods, pages 163–187, 1991.
W. Hackbusch and Z.P. Nowak, On the Complexity of the Panel Method (in russ.), In Proc. Of the Conference: Modern Problems in Numerical Analysis, Moscow, Sept 1986.
W. Hackbusch and Z.P. Nowak, On the Fast Matrix Multiplication in the Boundary Element Method by Panel-Clustering, Numerische Mathematik, 54: 463–491, 1989.
W. Hackbusch and S.A. Sauter, On Numerical Cubatures of Nearly Singular Surface Integrals arising in BEM Collocation, Computing, 52: 139–159, 1994.
W. Hackbusch and S.A. Sauter, On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations, Application of Mathematics, 38(4–5):301–322, 1993.
W. Hackbusch, C. Lage, S.A. Sauter, On the Efficient Realization of Sparse Matrix Techniques for Integral Equations with Focus on Panel Clustering, Cubature and Software Design Aspects, Tech. Rep. 95–4, Lehrstuhl Praktische Mathematik, Univ. Kiel., to appear in: Boundary Element Topics, W.L. Wendland (Editor), Springer-Verlag, 1997.
R. Kieser, C. Schwab, and W.L. Wendland, Numerical Evaluation of Singular and Finite-Part Integrals on Curved Surfaces Using Symbolic Manipulation, Computing, 49: 279–301, 1992.
C. Lage, Software development in BEM: Analysis and design of efficient techniques, PhD thesis, (in German) Institut für Informatik und Praktische Mathematik, University of Kiel, 24098 Kiel, Germany, 1995.
A. Rathsfeld, On Quadrature Methods for the Double Layer Potential Equation over the Boundary of a Polyhedron, Numer. Math., 66: 67–95, 1993.
A. Rathsfeld, Nyström’s Method and Iterative Solvers for the Solution of the Double Layer Potential Equation over Polyhedral Boundaries, SIAM J. Numer. Anal., 32(3):924–951.
V. Rukhlin, Rapid solutions of integral equations of classical potential theory, Journal of Computational Physics, 60(2):p. 187–207, 1985.
S.A. Sauter, Der Aufwand der Panel-Clustering-Methode für Integralgleichungen, Technical Report 9115, Institut für Praktische Mathematik, University of Kiel, 24105 Kiel, Germany, 1991.
S.A. Sauter, Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen, PhD thesis, Institut für Praktische Mathematik, University of Kiel, 24105 Kiel,Germany, 1992.
S.A. Sauter, Cubature Techniques for 3-d Galerkin BEM.
Ju W. Hackbusch and G. Wittum, eds, BEM: Implementation and Analysis of Advanced Algorithms, Proc. of the 12th GAMM-Seminar, Kiel Vieweg Verlag, NNFM, 1996.
C. Schwab and W.L. Wendland, Kernel Properties and Representations of Boundary Integral Operators, Math. Nachr., 156: 187–218, 1992.
C. Schwab and W.L. Wendland, On Numerical Cubatures of Singular Surface Integrals in Boundary Element Methods, Numerische Mathematik, pages 343–369, 1992.
A.H. Strgud, Approximate Calculations of Multiple Integrals, Prentice Hall, Englewood Cliffs, 1973.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media New York
About this chapter
Cite this chapter
Sauter, S.A. (1998). The panel clustering method in 3-d bem. In: Papanicolaou, G. (eds) Wave Propagation in Complex Media. The IMA Volumes in Mathematics and its Applications, vol 96. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1678-0_10
Download citation
DOI: https://doi.org/10.1007/978-1-4612-1678-0_10
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4612-7241-0
Online ISBN: 978-1-4612-1678-0
eBook Packages: Springer Book Archive