Skip to main content

The panel clustering method in 3-d bem

  • Chapter
Wave Propagation in Complex Media

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 96))

Abstract

In many cases, boundary value problems on a domain Ω can be rewritten as integral equations on the boundary of Ω. The discretization of this integral equation leads to a system of linear equations with a dense coefficient matrix of dimension N. In this paper, we will present the panel clustering algorithm which avoids the generation of the N 2 matrix entries by representing the integral operator on the discrete level by only О (N logk N) quantities. Thus, a matrix vector multiplication as a basic step in every iterative solver can be performed by О(N logk N) operations. This method can be applied to all kinds of integral equations discretized by, e.g., the Nyström, the collocation or the Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Brandt, Multilevel computations of integral transforms and particle interactions with oscillatory kernels, In IMACS 1st Int. Conf. On Corp. Phys., Boulder, Colorado, June 1990.

    Google Scholar 

  2. J. Elschner, The Double Layer Potential Operator over Polyhedral Domains I: Solvability in Weighted Sobolev Spaces. Appl. Anal., 45: 117–134, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Guiggiani, Direct Evaluation of Hypersingular Integrals in 2D BEM, In W. Hackbusch, editor, Proc. Of 7th GAMM Seminar on Numerical Techniques for BEM, Kiel 1991, pages 23–34, Braunschweig, 1991, Vieweg.

    Google Scholar 

  4. M. Guiggiani and A. Gigante, A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method, ASME J. Appl. Mech., 57:907–915.

    Google Scholar 

  5. W. Hackbusch, Integralgleichungen, Teubner, Stuttgart, 1989, (engl. transi.: Integral Equations Birkhänser, ISNM, Vol 120, 1995.)

    Google Scholar 

  6. W. Hackbusch, The Solution of Large Systems of BEM Equations by the Multi-Grid and Panel Clustering Technique, Rend. Sem. Mat. Uni. Pol. Torino, Fasc. Spec.: Numerical Methods, pages 163–187, 1991.

    Google Scholar 

  7. W. Hackbusch and Z.P. Nowak, On the Complexity of the Panel Method (in russ.), In Proc. Of the Conference: Modern Problems in Numerical Analysis, Moscow, Sept 1986.

    Google Scholar 

  8. W. Hackbusch and Z.P. Nowak, On the Fast Matrix Multiplication in the Boundary Element Method by Panel-Clustering, Numerische Mathematik, 54: 463–491, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Hackbusch and S.A. Sauter, On Numerical Cubatures of Nearly Singular Surface Integrals arising in BEM Collocation, Computing, 52: 139–159, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Hackbusch and S.A. Sauter, On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations, Application of Mathematics, 38(4–5):301–322, 1993.

    MathSciNet  MATH  Google Scholar 

  11. W. Hackbusch, C. Lage, S.A. Sauter, On the Efficient Realization of Sparse Matrix Techniques for Integral Equations with Focus on Panel Clustering, Cubature and Software Design Aspects, Tech. Rep. 95–4, Lehrstuhl Praktische Mathematik, Univ. Kiel., to appear in: Boundary Element Topics, W.L. Wendland (Editor), Springer-Verlag, 1997.

    Google Scholar 

  12. R. Kieser, C. Schwab, and W.L. Wendland, Numerical Evaluation of Singular and Finite-Part Integrals on Curved Surfaces Using Symbolic Manipulation, Computing, 49: 279–301, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Lage, Software development in BEM: Analysis and design of efficient techniques, PhD thesis, (in German) Institut für Informatik und Praktische Mathematik, University of Kiel, 24098 Kiel, Germany, 1995.

    Google Scholar 

  14. A. Rathsfeld, On Quadrature Methods for the Double Layer Potential Equation over the Boundary of a Polyhedron, Numer. Math., 66: 67–95, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Rathsfeld, Nyström’s Method and Iterative Solvers for the Solution of the Double Layer Potential Equation over Polyhedral Boundaries, SIAM J. Numer. Anal., 32(3):924–951.

    Google Scholar 

  16. V. Rukhlin, Rapid solutions of integral equations of classical potential theory, Journal of Computational Physics, 60(2):p. 187–207, 1985.

    Article  MathSciNet  Google Scholar 

  17. S.A. Sauter, Der Aufwand der Panel-Clustering-Methode für Integralgleichungen, Technical Report 9115, Institut für Praktische Mathematik, University of Kiel, 24105 Kiel, Germany, 1991.

    Google Scholar 

  18. S.A. Sauter, Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen, PhD thesis, Institut für Praktische Mathematik, University of Kiel, 24105 Kiel,Germany, 1992.

    Google Scholar 

  19. S.A. Sauter, Cubature Techniques for 3-d Galerkin BEM.

    Google Scholar 

  20. Ju W. Hackbusch and G. Wittum, eds, BEM: Implementation and Analysis of Advanced Algorithms, Proc. of the 12th GAMM-Seminar, Kiel Vieweg Verlag, NNFM, 1996.

    Google Scholar 

  21. C. Schwab and W.L. Wendland, Kernel Properties and Representations of Boundary Integral Operators, Math. Nachr., 156: 187–218, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Schwab and W.L. Wendland, On Numerical Cubatures of Singular Surface Integrals in Boundary Element Methods, Numerische Mathematik, pages 343–369, 1992.

    Google Scholar 

  23. A.H. Strgud, Approximate Calculations of Multiple Integrals, Prentice Hall, Englewood Cliffs, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sauter, S.A. (1998). The panel clustering method in 3-d bem. In: Papanicolaou, G. (eds) Wave Propagation in Complex Media. The IMA Volumes in Mathematics and its Applications, vol 96. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1678-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1678-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7241-0

  • Online ISBN: 978-1-4612-1678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics