Advertisement

Neonatal Vitamin Metabolism: Fat Soluble

  • Frank R. Greer
  • Richard D. Zachman

Abstract

The fat-soluble vitamins are an exciting area of perinatal research. The nutrient-gene interaction of vitamin A is perhaps the best described of any nutrient and we are continually learning more about its important role in fetal development. Vitamin D, actually a prohormone, is not far behind in the description of its effects on DNA transcription and its impact on fetal development is one of growing importance. New vitamin K—dependent proteins, other than coagulation factors, are being described in many organ tissues and knowledge of vitamin K’s role in perinatal metabolism is expanding. Of all the fat-soluble vitamins, vitamin E has the most proposed therapeutic benefits in the perinatal period. However, there are still no definite indications for its routine clinical use in pharmacologic quantities.

Keywords

Bronchopulmonary Dysplasia Other Hand Premature Neonate Retinyl Palmitate Maternal Vitamin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blomhoff R. Overview of vitamin A metabolism and function. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 1–35.Google Scholar
  2. 2.
    Crow JA, Ong DE. Cell-specific immunohistochemical localization of cellular retinol-binding protein (type two) in the small intestine of rat. Proc Natl Acad Sci USA 1985; 82: 4707–4711.PubMedCrossRefGoogle Scholar
  3. 3.
    Ong DE, Newcomer ME, Chytil F. Cellular retinol-binding proteins. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 283–318.Google Scholar
  4. 4.
    Blomhoff R. Transport and metabolism of vitamin A. Nutr Rev 1994; 52: 513–523.Google Scholar
  5. 5.
    Soprano DR, Blaner WS. Plasma retinol-binding proteins. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 257–282.Google Scholar
  6. 6.
    Saari JC. Retinoids in photosensitive systems. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 351–386.Google Scholar
  7. 7.
    Napoli JL. Retinoic acid homeostasis: prospective roles of β carotene, retinol, CRBP and CRABP. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 135–188.Google Scholar
  8. 8.
    Gudas LJ, Sporn MG, Roberts AB. Cellular biology and biochemistry of the retinoids. In: Sporn MG, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 443–520.Google Scholar
  9. 9.
    Chytil F. Vitamin A. Its role in differentiation and development in nutritional disease: research directions in comparative pathobiology. New York: Alan R. Liss 1986: 21–31.Google Scholar
  10. 10.
    Mangelsdorf DJ, Umesono K, Evans RM. The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 319–350.Google Scholar
  11. 11.
    Hofmann C, Eichele G. Retinoids in development. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 387–441.Google Scholar
  12. 12.
    Blaner WS, Olson JA. Retinol and retinoic acid metabolism. In: Sporn MB, Roberts AB, Goodman DS, eds. The retinoids. 2nd ed. Orlando, FL: Academic Press, 1994: 229–256.Google Scholar
  13. 13.
    Takahashi YI, Smith JE, Goodman DS. Vitamin A and retinol binding protein metabolism during fetal development in the rat. Am J Physiol 1977; 233: E263–E272.PubMedGoogle Scholar
  14. 14.
    Rasmussen M, Petersen LB, Norum KR. Liver retinoids and retinol esterification in fetal and pregnant rats at term. Scand J Gastroenterol 1985; 20: 696–700.PubMedCrossRefGoogle Scholar
  15. 15.
    Green T, Ford HC. Intracellular binding proteins for retinol and retinoic acid in early and term human placentas. Br J Obstet Gynaecol 1986; 93: 833–838.PubMedCrossRefGoogle Scholar
  16. 16.
    Torma H, Vahlquist A. Uptake of vitamin A and retinol binding protein by human placenta in vitro. Placenta 1986; 7: 295–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardner EM, Ross AC. Dietary vitamin A restriction produces marginal vitamin A status in young rats. J Nutr 1993; 123: 1435–1443.PubMedGoogle Scholar
  18. 18.
    Dostalova L. Correlation of the vitamin status between mother and newborn at delivery. Dev Pharmacol Ther 1982; 4: 45–47.PubMedGoogle Scholar
  19. 19.
    Butte NF, Calloway DH. Proteins, vitamin A, carotene, folacin, ferritin and zinc in Navajo maternal and cord blood. Biol Neonate 1982; 41: 273–278.PubMedCrossRefGoogle Scholar
  20. 20.
    Hustead VA, Gutcher GR, Anderson SA, et al. Relationship of vitamin A (retinol) status to lung disease in the preterm infant. J Pediatr 1984; 105: 610–615.PubMedCrossRefGoogle Scholar
  21. 21.
    Vobecky JS, Vobecky J, Shapcott D, et al. Biochemical indices of nutritional status in maternal, cord, and early neonatal blood. Am J Clin Nutr 1982; 36: 630–642.PubMedGoogle Scholar
  22. 22.
    Underwood BA. Maternal vitamin A status and its importance in infancy and early childhood. Am J Clin Nutr 1994; 59 (suppl): 517S–524S.PubMedGoogle Scholar
  23. 23.
    Sklan D, Shalit I, Lasebnik N, et al. Retinol transport proteins and concentrations in human amniotic fluid, placenta, and fetal and maternal sera. Br J Nutr 1985; 54: 577–583.PubMedCrossRefGoogle Scholar
  24. 24.
    Wallingford JC, Milunsky A, Underwood BA. Vitamin A and retinol binding protein in amniotic fluid. Am J Clin Nutr 1983; 38: 377–381.PubMedGoogle Scholar
  25. 25.
    Parkinson CE, Tan JCY. Vitamin A concentration in amniotic fluid and maternal serum related to neural tube defects. Br J Obstet Gynaecol 1982; 89: 935–939.PubMedCrossRefGoogle Scholar
  26. 26.
    Koskinin T, Valtonen P, Lehtovaara I, et al. Amniotic fluid retinol concentrations in late pregnancy. Biol Neonate 1986; 49: 81–84.CrossRefGoogle Scholar
  27. 27.
    Drott P, Meurling S. Plasma concentrations of fat soluble vitamins A and E in neonates with myelomeningocele. Eur J Pediatr Surg 1992; 2 (5): 265–268.CrossRefGoogle Scholar
  28. 28.
    Burnett D, Bradwell AR. The origin of plasma proteins in human amniotic fluid: the significance of alphaantichymotrypsin complexes. Biol Neonate 1980; 37: 302–307.PubMedCrossRefGoogle Scholar
  29. 29.
    Robens JR. Teratogenic effects of hypervitaminosis A in the hamster and guinea pig. Toxicol Appl Pharmacol 1970; 16: 88–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Geelan JCA. Hypervitaminosis A-induced teratogenesis. CRC Crit Rev Toxicol 1979; 6: 351–375.CrossRefGoogle Scholar
  31. 31.
    Shenefelt RE. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 1972; 5: 103–118.PubMedCrossRefGoogle Scholar
  32. 32.
    Rothman KJ, Moore LL, Singer MR, et al. Teratogenicity of high vitamin A intake. N Engl J Med 1995; 333: 1369–1373.PubMedCrossRefGoogle Scholar
  33. 33.
    Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embryopathy. N Engl J Med 1985; 313: 837–841.PubMedCrossRefGoogle Scholar
  34. 34.
    Benke PJ. The isotretinoin teratogen syndrome. JAMA 1984; 251: 3267–3269.PubMedCrossRefGoogle Scholar
  35. 35.
    Lott IT, Bocian M, Pribram HW, et al. Fetal hydrocephalus and ear anomalies associated with maternal use of isotretinoin. J Pediatr 1984; 105: 597–602.PubMedCrossRefGoogle Scholar
  36. 36.
    Goodman DS. Overview of current knowledge of metabolism of vitamin A and carotenoids. J Natl Cancer Inst 1984; 73: 1375–1379.PubMedGoogle Scholar
  37. 37.
    Lohnes D, Mark M, Mendelsohn C, et al. Developmental roles of the retinoic acid receptors. J Steroid Biochem Mol Biol 1995; 53: 475–486.PubMedCrossRefGoogle Scholar
  38. 38.
    Soprano DR, Tairis N, Gyda M III, et al. Induction of RAR β2 gene expression in embryos and RAR β2 transactivation by the synthetic retinoid RO 13–6307 correlates with its high teratogenic potency. Toxicol Appl Pharmocol 1993; 122: 159–163.CrossRefGoogle Scholar
  39. 39.
    Soprano DR, Gyda M III, Jiang H, et al. A sustained elevation in retinoic acid receptor β2 mRNA and protein occurs during retinoic acid-induced fetal dysmorphogenesis. Mech Dev 1994; 45: 243–253.PubMedCrossRefGoogle Scholar
  40. 40.
    Look J, Landevehr J, Bauer F, et al. Marked resistance of RAR γdeficient mice to the toxic effects of retinoic acid. Am J Physiol 1995; 269 (Endocrinol Met 32): E91 - E98.PubMedGoogle Scholar
  41. 41.
    Grummer MA, Zachman RD. The effect of ethanol ingestion on fetal vitamin A in the rat. Pediatr Res 1990; 28: 186–189.PubMedCrossRefGoogle Scholar
  42. 42.
    DeJonge MH, Zachman RD. The effect of maternal ethanol ingestion on fetal rat vitamin A: a model for fetal alcohol syndrome. Pediatr Res 1995; 37: 418–423.PubMedCrossRefGoogle Scholar
  43. 43.
    Grummer MA, Zachman RD. Prenatal ethanol consumption alters the expression of cellular retinol binding protein and retinoic acid receptor mRNA in fetal rat embryo and brain. Alcoholism Clin Exp Res 1995; 19: 1376–1381.CrossRefGoogle Scholar
  44. 44.
    Duester G. Are ethanol-induced birth defects caused by functional retinoic acid deficiency? In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 343–363.Google Scholar
  45. 45.
    Nau H, Tzimas G, Mondry M, et al. Antiepileptic drugs alter endogenous retinoid concentrations: a possible mechanism of teratogenesis of anticonvulsant therapy. Life Sci 1995; 57: 53–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Ostrea EM Jr, Balum JE, Winkler R, et al. Influence of breastfeeding on the restoration of the low serum concentration of vitamin E and 13-carotene in the newborn infant. Am J Obstet Gynecol 1986; 154: 1014–1017.Google Scholar
  47. 47.
    Zachman RD, Grummer MA. Uptake and metabolism of β-carotene in isolated rat lung type II cells. Pediatr Res 1989; 25: 333A.Google Scholar
  48. 48.
    Ong DE. Absorption of vitamin A. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 37–72.Google Scholar
  49. 49.
    MacDonald PN, Ong DE. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J Biol Chem 1987; 262: 10550–10556.PubMedGoogle Scholar
  50. 50.
    Li E, Demmer LA, Sweetser DA, et al. Rat cellular retinol-binding protein. II. Use of a cloned cDNA to define its primary structure, tissue specific expression and developmental regulation. Proc Natl Acad Sci USA 1986; 83: 5779–5783.PubMedCrossRefGoogle Scholar
  51. 51.
    Ong DE, Lucas PC, Kakkad B, Quick TC. Ontogeny of two vitamin A-metabolizing enzymes and two retinolbinding proteins present in the small intestine of rat. J Lipid Res 1991; 32: 1521–1527.PubMedGoogle Scholar
  52. 52.
    Rubin DC, Ong DE, Gordon JI. Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci USA 1989; 86: 1278–1282.PubMedCrossRefGoogle Scholar
  53. 53.
    Quick TC, Ong DE. Levels of cellular retinol binding proteins in the small intestine of rats during pregnancy and lactation. J Lipid Res 1989; 30: 1049–1054.PubMedGoogle Scholar
  54. 54.
    Herr F, MacDonald PN, Ong DE. Partial purification and characterization of lecithin-retinol acyltransferase from rat liver. J Nutr Biochem 1991; 2: 503–511.CrossRefGoogle Scholar
  55. 55.
    Matsumoto E, Hirosawa K, Abe K, et al. Development of the vitamin A storing cell in mouse liver during late fetal and neonatal periods. Anat Embryol 1984; 169: 249–259.PubMedCrossRefGoogle Scholar
  56. 56.
    Kato M, Kato K, Goodman DS. Immunochemical studies on the localization and on the concentration of cellular retinol-binding protein in rat liver during perinatal development. Lab Invest 1985; 52: 475–484.PubMedGoogle Scholar
  57. 57.
    Ismadi SD, Olson JA. Dynamics of the fetal distribution and transfer of vitamin A between rat fetuses and their mother. Int J Vitam Nutr Res 1982; 52: 111–118.Google Scholar
  58. 58.
    Zachman RD, Kakkad B, Chytil F. Perinatal rat lung retinol (vitamin A) and retinyl palmitate. Pediatr Res 1984; 18: 1297–1299.PubMedCrossRefGoogle Scholar
  59. 59.
    Batres RO, Olson JA. A marginal vitamin A status alters the distribution of vitamin A among parenchymal and stellate cells in rat liver. J Nutr 1987; 117: 874–879.PubMedGoogle Scholar
  60. 60.
    Green MJ, Green JB, Lewis KC. Variation in retinol utilization rate with vitamin A status in rat. J Nutr 1987; 117: 694–703.PubMedGoogle Scholar
  61. 61.
    Olson JA. Recommended dietary intakes (RDI) of vitamin A in humans. Am J Clin Nutr 1987; 45: 704–716.PubMedGoogle Scholar
  62. 62.
    Olson JA, Gunning DB, Tilton RA. Liver concentrations of vitamin A and carotenoids, as a function of age and other parameters of American children who died of various causes. Am J Clin Nutr 1984; 39: 903–910.PubMedGoogle Scholar
  63. 63.
    Shenai JP, Chytil F, Stahlman MT. Liver vitamin A reserves of very low birth weight neonates. Pediatr Res 1985; 19: 892–893.PubMedCrossRefGoogle Scholar
  64. 64.
    Sharma HS, Misra UK. Postnatal distribution of vitamin A in liver, lung, heart and brain of the rat in relation to maternal vitamin A status. Biol Neonate 1986; 50: 345–350.PubMedCrossRefGoogle Scholar
  65. 65.
    Gehre-Medhin M, Vahlquist A. Vitamin A nutrition in the human fetus. Acta Paediatr Scand 1984; 73: 333–340.CrossRefGoogle Scholar
  66. 66.
    Zachman RD, Valceschini G. Effect of premature delivery on rat lung retinol (vitamin A) and retinyl ester stores. Biol Neonate 1988; 54: 285–288.PubMedCrossRefGoogle Scholar
  67. 67.
    Shenai JP, Chytil F. Vitamin A storage in lungs during perinatal development in the rat. Biol Neonate 1990; 57: 126–132.PubMedCrossRefGoogle Scholar
  68. 68.
    Shenai JP, Chytil F. Effect of maternal vitamin A administration on fetal lung vitamin A stores in the perinatal rat. Biol Neonate 1990; 58: 318–325.PubMedCrossRefGoogle Scholar
  69. 69.
    Ubels JL, Osgood TB, Foley KM. Vitamin A is stored as fatty acyl esters of retinol in the lacrimal gland. Curr Eye Res 1988; 7: 1009–1016.PubMedCrossRefGoogle Scholar
  70. 70.
    Napoli JL, McCormick AM, O’Meara B, et al. Vitamin A metabolism; alpha-tocopherol modulates tissue retinol levels in vivo, and retinyl palmitate hydrolase in vitro. Arch Biochem Biophys 1984; 230: 194–202.PubMedCrossRefGoogle Scholar
  71. 71.
    Gutcher GR, Raynor WJ, Farrell PM. An evaluation of vitamin E status in premature infants. Am J Clin Nutr 1984; 40: 1078–1089.Google Scholar
  72. 72.
    Chen WYJ, James HO, Glover J. Retinol transport proteins. Biochem Soc Trans 1986; 14: 925–928.PubMedGoogle Scholar
  73. 73.
    Zachman RD. Retinol (vitamin A) and the neonates: special problem of the human premature infant. Am J Clin Nutr 1989; 50: 413–424.PubMedGoogle Scholar
  74. 74.
    Shenai JP, Chytil F, Jhaveri A, et al. Plasma vitamin A and retinol binding protein in premature and term neonates. J Pediatr 1981; 99: 302–305.PubMedCrossRefGoogle Scholar
  75. 75.
    Borek C, Smith JE, Soprano DR, et al. Regulation of retinol-binding protein metabolism by glucocorticoid hormones in cultured H4IIEC3 liver cells. Endocrinology 1981; 109: 386–391.PubMedCrossRefGoogle Scholar
  76. 76.
    Hustead VA, Zachman RD. The effect of antenatal dexamethasone on maternal and fetal retinol-binding protein. Am J Obstet Gynecol 1986; 154: 203–205.PubMedGoogle Scholar
  77. 77.
    Georgieff MK, Chockalingam UM, Sasanow SR, et al. The effect of antenatal betamethasone on cord blood concentrations of retinol-binding protein, transthyretin, transfer-rin, retinol and vitamin E. J Pediatr Gastroenterol Nutr 1988; 7: 713–718.CrossRefGoogle Scholar
  78. 78.
    Georgieff MK, Susanow SR, Mammal MC, et al. Cord prealbumin values in newborn infants: effect of prenatal steroids, pulmonary maturity, and size for dates. J Pediatr 1986; 108: 972–976.PubMedCrossRefGoogle Scholar
  79. 79.
    Hustead VA, Greger J, Gutcher GR. Zinc supplementation and plasma concentration of vitamin A in preterm infants. Am J Clin Nutr 1988; 47: 1017–1021.PubMedGoogle Scholar
  80. 80.
    Lockitch G, Godolphin W, Pendray MR, et al. Serum zinc, copper, retinol binding protein, pre-albumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation. J Pediatr 1983; 102: 304–308.PubMedCrossRefGoogle Scholar
  81. 81.
    Kylberg HK, Ong DE, Chytil F. Cellular retinol binding protein during postnatal development of the rat small intestine. Biol Neonate 1981; 39: 100–104.PubMedCrossRefGoogle Scholar
  82. 82.
    Ong DE, Chytil F. Changes in levels of cellular retinol and retinol acid-binding proteins of liver and lung during perinatal development of rat. Proc Natal Acad Sci USA 1976; 73: 3976–3978.CrossRefGoogle Scholar
  83. 83.
    Frolik CA. Metabolism of retinoids. In: Sporn MG, Roberts AB, Goodman DS, eds. The retinoids, vol. 2. Orlando, FL: Academic Press 1984: 177–208.Google Scholar
  84. 84.
    West KP Jr. Vitamin A deficiency: its epidemiology and relation to child mortality and morbidity. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 585–614.Google Scholar
  85. 85.
    Blomhoff HK, Smeland EB. Role of retinoids in normal hematopoiesis and the immune system. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 451–484.Google Scholar
  86. 86.
    Ross AC. Vitamin A status: relationship to immunity and the antibody response. Proc Soc Exp Biol Med 1992; 200: 303–320.PubMedGoogle Scholar
  87. 87.
    Semba RD, Graham NMH, Caiaffa WT, et al. Increased mortality associated with vitamin A deficiency during human immunodeficiency virus type 1 infection. Arch Intern Med 1993; 153: 2149–2154.PubMedCrossRefGoogle Scholar
  88. 88.
    Semba RD, Miotti PG, Chiphangivi JD, et al. Maternal vitamin A deficiency and mother to child transmission of HIV-1. Lancet 1994; 343: 1593–1597.PubMedCrossRefGoogle Scholar
  89. 89.
    Rush MG, Hazinski TA. Current therapy of BPD. Clin Perinatol 1992; 19: 563–590.PubMedGoogle Scholar
  90. 90.
    Chytil F. The lungs and vitamin A. Am J Physiol 1992; 262: L517–L527.PubMedGoogle Scholar
  91. 91.
    Blackfan KD, Wolach SB. Vitamin A deficiency in infants. A clinical and pathological study. J Pediatr 1933; 3: 679–706.CrossRefGoogle Scholar
  92. 92.
    Harris CC, Sporn MB, Kaufman DG, et al. Histogenesis of squamous metaplasia in hamster tracheal epithelium caused by vitamin A deficiency or benzopyrene ferric oxide. J Natl Cancer Inst 1972; 48: 743–761.PubMedGoogle Scholar
  93. 93.
    Boren HG, Pauley J, Wright EG, et al. Cell population in the hamster tracheal epithelium in relation to vitamin A status. Int J Vitam Nutr Res 1974; 44: 382–390.PubMedGoogle Scholar
  94. 94.
    Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. N Engl J Med 1967; 276: 357–368.PubMedCrossRefGoogle Scholar
  95. 95.
    Mupanemunda RH, Lee DSC, Fraher LJ, et al. Postnatal changes in serum retinol status in very low birthweight infants. Early Hum Dev 1994; 38: 45–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Shenai JP, Chytil F, Stahlman MT. Vitamin A status of neonates with bronchopulmonary dysplasia. Pediatr Res 1985; 19: 185–188.PubMedGoogle Scholar
  97. 97.
    Shenai JP, Kennedy KA, Chytil F, et al. Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. J Pediatr 1987; 111: 269–277.PubMedCrossRefGoogle Scholar
  98. 98.
    Chan V, Greenough A, Cheeseman P, et al. Vitamin A levels at birth of high risk preterm infants. J Perinat Med 1993; 21: 147–151.PubMedCrossRefGoogle Scholar
  99. 99.
    Papagaroufalis C, Caires M, Pantazataou E, et al. A trial of vitamin A supplementation for the prevention of bronchopulmonary dysplasia (BPD) in very-lowbirthweight (VLBW) infants. Pediatr Res 1988; 23: 518A (A).Google Scholar
  100. 100.
    Chabra S, Arnold JD, Leslie GI, et al. Vitamin A status in preterm neonates with and without chronic lung disease. J Paediatr Child Health 1994; 30: 432–435.PubMedCrossRefGoogle Scholar
  101. 101.
    Zachman RD, Samuels DP, Brand JM, et al. Use of the intramuscular relative dose response test to predict bronchopulmonary dysplasia in premature infants. Am J Clin Nutr 1996; 63: 123–129.PubMedGoogle Scholar
  102. 102.
    Shenai JP, Rush MG, Stahlman MT, et al. Plasma retinol binding protein response to vitamin A administration in infants susceptible to bronchopulmonary dysplasia. J Pediatr 1990; 116: 607–614.PubMedCrossRefGoogle Scholar
  103. 103.
    Shenai JP. Vitamin A in lung development and bronchopulmonary dysplasia. In: Blomhoff R, ed. Vitamin A in health and disease. New York: Marcel Dekker, 1994: 323–342.Google Scholar
  104. 104.
    Robbins ST, Fletcher AB. Early vs. delayed vitamin A supplementation in very-low-birth-weight infants. J Parenter Enteral Nutr 1993; 17: 220–225.CrossRefGoogle Scholar
  105. 105.
    Pearson E, Bose C, Snidow T, et al. Trial of vitamin A supplementation in very low birth weight infants at risk for bronchopulmonary dysplasia. J Pediatr 1992; 121: 420–427.PubMedCrossRefGoogle Scholar
  106. 106.
    Landman J, Sive A, Heise HD, et al. Comparison of enteral and intramuscular vitamin A supplementation in preterm infants. Early Hum Dev 1992; 30: 163–170.PubMedCrossRefGoogle Scholar
  107. 107.
    Rush MG, Shenai JP, Parker RA, et al. Intramuscular versus enteral vitamin A supplementation in very low birth weight neonates. J Pediatr 1994; 125: 458–462.PubMedCrossRefGoogle Scholar
  108. 108.
    Agaoestina T, Humphrey JH, Taylor GA, et al. Safety of one 52-µmol (50,000 IU) oral dose of vitamin A administered to neonates. Bull World Health Org 1994; 72: 859–868.Google Scholar
  109. 109.
    McMenamy KR, Anderson MJ, Zachman RD. Effect of dexamethasone and oxygen exposure on neonatal rat lung retinoic acid receptor proteins. Pediatr Pulmonol 1994; 18: 232–238.PubMedCrossRefGoogle Scholar
  110. 110.
    Grummer MA, Zachman RD. Postnatal rat lung retinoic acid receptor (RAR) mRNA expression and effects of dexamethasone of RAR β mRNA. Pediatr Pulmonol 1995; 20: 234–240.PubMedCrossRefGoogle Scholar
  111. 111.
    Grummer MA, John ML, Zachman RD. The interaction of retinoic acid (RA) and dexamethasone (DEX) on retinoic acid receptors (RARs) and surfactant protein C (SP-C) in fetal rat lung explants (FLE) and the murine lung epithelial (MLE) cell line. Pediatr Res 1996; 39: 357A.Google Scholar
  112. 112.
    Georgieff MK, Mammel MC, Mills MM, et al. Effect of postnatal steroid administration on serum vitamin A concentration in newborn infants with respiratory compromise. J Pediatr 1989; 114: 301–304.PubMedCrossRefGoogle Scholar
  113. 113.
    Underwood BA. Vitamin A in animal and human nutrition. In: Sporn MG, Goodman DS, eds. The retinoids, vol. 1. New York: Academic Press, 1984; 281–392.CrossRefGoogle Scholar
  114. 114.
    Meyer KA, Popper H, Steigmann F, et al. Comparison of vitamin A of liver biopsy specimens with plasma vitamin A in man. Proc Soc Exp Biol Med 1942; 49: 589–591.Google Scholar
  115. 115.
    Olson JA. Serum levels of vitamin A and carotenoids as reflectors of nutritional status. J Natl Cancer Inst 1984; 73: 1439–1444.PubMedGoogle Scholar
  116. 116.
    Montreewasuwat N, Olson JA. Serum and liver concentrations of vitamin A in Thai fetuses as a function of gestational age. Am J Clin Nutr 1979; 32: 601–606.PubMedGoogle Scholar
  117. 117.
    Loerch JD, Underwood AB, Lewis KC. Response of plasma levels of vitamin A to a dose of vitamin A as an indicator of hepatic vitamin A reserves in rats. J Nutr 1979; 109: 778–786.PubMedGoogle Scholar
  118. 118.
    Flores H, Campos F, Araujo C, et al. Assessment of marginal vitamin A deficiency in Brazilian children using the relative dose response procedure. Am J Clin Nutr 1984; 40: 1281–1289.PubMedGoogle Scholar
  119. 119.
    Tanumihardjo SA, Olson JA. A modified relative dose response assay employing 3,4-didehydroretinol (vitamin A2) in rats. J Nutr 1988; 118: 598–603.PubMedGoogle Scholar
  120. 120.
    Tanumihardjo SA, Koellner PG, Olson JA. The modified relative-dose-response assay as an indicator of vitamin A status in a population of well-nourished American children. Am J Clin Nutr 1990; 52: 1064–1067.PubMedGoogle Scholar
  121. 121.
    Tanumihardjo SA, Permaesih D, Dahro AM, et al. Comparison of vitamin A status assessment techniques in children from two Indonesian villages. Am J Clin Nutr 1994; 60: 136–141.PubMedGoogle Scholar
  122. 122.
    Garner EM, Ross AC. Dietary vitamin A restriction produces marginal vitamin A status in young rats. J Nutr 1993; 123: 1434–1443.Google Scholar
  123. 123.
    Kawashima H, Kurokawa K. Metabolism and sites of action of vitamin D in the kidney. Kidney Int 1986; 29: 98–107.PubMedCrossRefGoogle Scholar
  124. 124.
    Carlberg C. Mechanisms of nuclear signaling by vitamin D3 interplay with retinoid and thyroid hormone signaling. Eur J Biochem 1995; 231: 517–527.PubMedCrossRefGoogle Scholar
  125. 125.
    Johnson JA, Grande JP, Roche PC, et al. Ontogeny of the 1,25-dihydroxyvitamin D3 receptor in fetal rat bone. J Bone Miner Res 1996; 11: 56–61.PubMedCrossRefGoogle Scholar
  126. 126.
    Hollis BW, Pittard WB. Evaluation of the total fetomaternal vitamin D relationships at term: evidence for social differences. J Clin Endocrinol Metab 1984; 59: 652–657.PubMedCrossRefGoogle Scholar
  127. 127.
    Greer FR, Hollis BW, Napoli JL. High concentration of vitamin D2 in human milk associated with pharmacologic doses of vitamin D2. J Pediatr 1984; 105: 61–64.PubMedCrossRefGoogle Scholar
  128. 128.
    Wieland P, Fischer JA, Trechsel IU, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol 1980; 239: E385 - E390.PubMedGoogle Scholar
  129. 129.
    Seino Y, Ishida M, Yamaoka K. Serum calcium regulating hormones in the perinatal period. Calcif Tissue Int 1982; 34: 131–135.PubMedCrossRefGoogle Scholar
  130. 130.
    Delvin EE, Glorieux FH, Salle BL, et al. Control of vitamin D metabolism in preterm infants: fetomaternal relationships. Arch Dis Child 1982; 57: 754–757.PubMedCrossRefGoogle Scholar
  131. 131.
    Bouillon R, Van Baelen H, DeMoor P. 25-Hydroxyvitamin D and its binding protein in maternal and cord serum. J Clin Endocrinol Metab 1977; 45: 679–684.PubMedCrossRefGoogle Scholar
  132. 132.
    Weisman Y, Occhipenti M, Knox G, et al. Concentration of 24,25-dihydroxyvitamin D and 25-hydroxyvitamin D in paired maternal-cord sera. Am J Obstet Gynecol 1978; 130: 704–707.PubMedGoogle Scholar
  133. 133.
    Paunier L, Lacoort G, Pelland P, et al. 25-Hydroxyvitamin D and calcium levels in maternal, cord and infant serum in relation to maternal vitamin D intake. Helv Paediat Acta 1978; 33: 95–103.PubMedGoogle Scholar
  134. 134.
    Shimotsuji T, Seino Y, Ishida M. Relations of plasma 25-hydroxyvitamin D levels in mothers, cord blood and newborn infants, and postnatal change in plasma 25-hydroxyvitamin D levels. J Nutr Sci Vitamin 1979; 25: 79–86.CrossRefGoogle Scholar
  135. 135.
    Gertner JM, Glassman MS, Coustan DR, et al. Fetomaternal vitamin D relationships at term. J Pediatr 1980; 97: 637–640.PubMedCrossRefGoogle Scholar
  136. 136.
    Cockburn F, Belton NR, Purvis RJ, et al. Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. Br Med J 1980; 281: 11–14.PubMedCrossRefGoogle Scholar
  137. 137.
    Kuroda E, Okano T, Mizuno N. Plasma levels of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in maternal cord and neonatal blood. J Nutr Sci Vitaminol 1981; 27: 55–65.PubMedCrossRefGoogle Scholar
  138. 138.
    Verity CM, Burman D, Beadle PC, et al. Seasonal changes in perinatal vitamin D metabolism: maternal and cord blood biochemistry in normal pregnancies. Arch Dis Child 1981; 56: 943–948.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhao D, Xue Q, Xue, Y. Serum 25-OHD levels in maternal and cord blood in Beijing, China. Acta Paediatr Scand 1990; 79: 1240–1241.PubMedGoogle Scholar
  140. 140.
    Glasgow JFT, McBride J, Fairney A. The effect of local atmospheric temperature upon umbilical cord 25-hydroxyvitamin D. Br J Med Sci 1982; 151: 180–183.Google Scholar
  141. 141.
    Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats.Biochim Biophy Acta 1976; 428: 388–395.CrossRefGoogle Scholar
  142. 142.
    Rebut-Bonneton C, Demignon J, Cancela L, et al. Effect of 25-hydroxyvitamin D3 and 1,25-hydroxyvitamin D3 maternal loads on maternal and fetal vitamin D metabolite level in the rat. Reprod Nutr Dev 1985; 25: 583–590.PubMedCrossRefGoogle Scholar
  143. 143.
    Goff JP, Horst RI, Littledike ET. Effect of the maternal vitamin D status at parturition on the vitamin D status of the neonatal calf. J Nutr 1982; 112: 1387–1393.PubMedGoogle Scholar
  144. 144.
    Devaskar UP, Ho M, Devaskar SU, et al. 25-Hydroxy-and 1α,25-dihydroxyvitamin D. Maternal-fetal relationship and the transfer of 1,25-dihydroxyvitamin D3 across the placenta in an ovine model. Dev Pharmacol Ther 1983; 7: 213–220.Google Scholar
  145. 145.
    Schedewie H, Slikker W, Hill D, et al. Transplacental transfer of 1,25(OH)2 vitamin D in subhuman primates. Clin Res 1979; 27: 813A.Google Scholar
  146. 146.
    Marx SJ, Swart EG, Hamstra AJ, et al. Normal intrauterine development of the fetus of a woman receiving extraordinarily high doses of 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 1980; 51: 1138–1142.PubMedCrossRefGoogle Scholar
  147. 147.
    Salle BL, Berthezene F, Glorieux FH, et al. Hypoparathyroidism during pregnancy: treatment with calcitriol. J Clin Endocrinol Metab 1981; 52: 810–813.PubMedCrossRefGoogle Scholar
  148. 148.
    Ron M, Levitz J, Chuba J, et al. Transfer of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 across the perfused human placenta. Am J Obstet Gynecol 1984; 148: 370–374.PubMedGoogle Scholar
  149. 149.
    Fleischman AR, Rosen JF, Cole J, et al. Maternal and fetal serum 1,24-dihydroxyvitamin D levels at term. J Pediatr 1980; 97: 640–642.PubMedCrossRefGoogle Scholar
  150. 150.
    Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D meostasis in the perinatal period, 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med 1980; 302: 315–319.PubMedCrossRefGoogle Scholar
  151. 151.
    Markestad T, Aksnes L, Alslein M, et al. 25-(Tokyo) Hydroxyvitamin D and 1,25-dihydroxyvitamin D or D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr 1984; 40: 1057–1063.PubMedGoogle Scholar
  152. 152.
    Delvin EE, Arabian A, Glorieux FH, et al. In vitro metabolism of 25-hydroxycholecalciferol by isolated cells from human decidua. J Clin Endocrinol Metab 1985; 60: 880–885.PubMedCrossRefGoogle Scholar
  153. 153.
    Zerwekh JE, Breslau NA. Human placental production of 1α,25-dihydroxyvitamin D3: biochemical characterization and production in normal subjects and patients with pseudohypoparathyroidism. J Clin Endocrinol Metab 1986; 62: 192–196.PubMedCrossRefGoogle Scholar
  154. 154.
    Pike JW, Gooze LL, Haussler MR. Biochemical evidence of 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary and placental tissues. Life Sci 1980; 26: 407–414.PubMedCrossRefGoogle Scholar
  155. 155.
    Durand D, Barlet J-P, Braithwaite GD. The influence of 1,25-dihydroxycalciferol on the mineral content of foetal guinea-pigs. Reprod Nutr Dev 1983; 23: 235–244PubMedCrossRefGoogle Scholar
  156. 156.
    Durand D, Braithwaite GD, Barlet J-P. The effect of low hydroxycalciferol on the placental transfer of calcium and phosphate in sheep. Br J Nutr 1983; 49: 475–480.PubMedCrossRefGoogle Scholar
  157. 157.
    Brommage R, DeLuca HF. Placental transport of calcium and phosphorus is not regulated by vitamin D. Am J Physiol 1984; 246: F526 - F529.PubMedGoogle Scholar
  158. 158.
    Care AD. The placental transfer of calcium. J Dev Physiol 1991; 15: 253–257.PubMedGoogle Scholar
  159. 159.
    Care AD. Calcium homeostasis in the foetus. J Dev Physiol 1980; 2: 85–99.PubMedGoogle Scholar
  160. 160.
    Moore ES, Langman CB, Favus MJ, et al. Role of fetal 1,25-dihydroxyvitamin D production in intrauterine phosphorus and calcium homeostasis. Pediatr Res 1985; 19: 566–569.PubMedGoogle Scholar
  161. 161.
    Garel J-M, Pic P, Jost A. Action de la parathormone chez le foetus de rat. Ann Endocrinol 1971; 32: 253–262.Google Scholar
  162. 162.
    Rodda CP, Kubota M, Heath JA, et al. Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroid glands and sheep placenta: comparisons with a similar protein implicated in humoral hypercalcaemia of malignancy. J Endocrinol 1988; 117: 261–271.PubMedCrossRefGoogle Scholar
  163. 163.
    Moseley JM, Gillespi MT. Parathyroid hormone-related protein. Crit Rev Clin Lab Sci 1995; 32: 299–343.PubMedCrossRefGoogle Scholar
  164. 164.
    Philbrick WM, Wysolmerski JJ, Galbraith S, et al. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 1996; 76: 127–173.PubMedGoogle Scholar
  165. 165.
    Ross R, Care AD, Robinson JS, et al. Perinatal 1,25(OH)2D3 in the sheep and its role in the maintenance of the transplacental calcium gradient. J Endocrinol 1980; 87: 17P - 18 P.Google Scholar
  166. 166.
    Lester GE, Gray TK, Lorenc RS. Evidence for maternal and fetal difference in vitamin D metabolism. Proc Soc Exp Biol Med 1978; 159: 303–307.PubMedGoogle Scholar
  167. 167.
    Salle BL, Glorieux FH, Delvin EE. Perinatal vitamin D metabolisms. Biol Neonate 1988; 54: 181–187.PubMedCrossRefGoogle Scholar
  168. 168.
    Kuoppala T, Tuinrala R, Parvianinen M, et al. Can fetus ho regulate its calcium uptake? Br J Ob Gynaecol 1984; 91: 1912–1916.Google Scholar
  169. 169.
    Bouillon R, Van Assche FA, Van Baelen H. Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3: significance of the free 1,25-dihydroxyvitamin D3 concentration. Clin Invest 1981; 67: 589–596.CrossRefGoogle Scholar
  170. 170.
    Bouillon R, Van Baelen H, DeMoor P. 25-Hydroxyvitamin D and its binding protein in maternal and serum. J Clin Endocrinol Metab 1977; 45: 679–684.PubMedCrossRefGoogle Scholar
  171. 171.
    Hillman LS, Haddad JG. Serial analyses of serum vitamin D binding protein in preterm infants from birth to post-conceptual maturity. J Clin Endocrinol Metab 1983; 56: 189–191.PubMedCrossRefGoogle Scholar
  172. 172.
    Auconi P, Biogini R, Colarizi P. Vitamin D-binding protein in the prenatal period. Eur J Pediatr 1985; 144: 228–229.PubMedCrossRefGoogle Scholar
  173. 173.
    Clements MR, Fraser DR. Vitamin D supply to the fetus and neonate. J Clin Invest 1988; 81: 1768–1773.PubMedCrossRefGoogle Scholar
  174. 174.
    Brooke OG, Brown IRF, Cleeve HJW. Observation on the vitamin D state of pregnant Asian women. Br J Obstet Gynaecol 1981; 88: 18–26.PubMedCrossRefGoogle Scholar
  175. 175.
    Hollander D. Intestinal absorption of vitamins A and E. J Lab Clin Invest 1981; 97: 449–462.Google Scholar
  176. 176.
    Goldsmith R. Enterohepatic cycling of vitamin D and metabolites. Minerva Electrolyte Metab 1982; 8: 289–292.Google Scholar
  177. 177.
    Kodicek E. The fate of labeled vitamin D in rats and infants. In: Garattine S, Pauletti G, eds. Drugs affecting lipid metabolism. Amsterdam: Elsevier, 1961: 515–519.Google Scholar
  178. 178.
    Delmas PO, Glorieux FH, Delvin EE, et al. Perinatal serum bone gla-protein and vitamin D metabolite preterm and full-term neonates. J Clin Endocrinol 1987; 65: 588–591.CrossRefGoogle Scholar
  179. 179.
    Nishioka T, Yasuda T, Niimi H, et al. Evidence calcitonin plays a role in the postnatal increased serum 1α,25dihydroxyvitamin D. Eur J Pediatr 1988; 47: 1148–1152.Google Scholar
  180. 180.
    Fetter WPF, Mettau JW, Degenhart HJ, et al. Plasma 1,25dihydroxyvitamin D concentration in premature infants. Acta Paediatr Scand 1985; 74: 549–554.PubMedCrossRefGoogle Scholar
  181. 181.
    Mawer EF, Stanbury SW, Robinson M.1, et al. Vitamin D nutrition and vitamin D metabolism in the premature human neonate. Clin Endocrinol (Oxf) 1986; 25: 641–649.CrossRefGoogle Scholar
  182. 182.
    Hillman LS, Salmons S, Dokoh S. Serum 1,25-dihydroxyvitamin D concentration in premature infants: preliminary results. Calcif Tissue Int 1985; 37: 223–227.PubMedCrossRefGoogle Scholar
  183. 183.
    Hillman LS, Hoff N, Salmans S, et al. Mineral homeostasis in very premature infants: serial evaluations of serum 25hydroxyvitamin D, serum minerals, and bone mineralization. J Pediatr 1985; 106: 970–980.PubMedCrossRefGoogle Scholar
  184. 184.
    Cooper TJ, Anast CS. Circulating immunoreactive parathyroid hormone levels in premature infants and the response to calcium therapy. Acta Paediatr Scand 1985; 74: 669–673.PubMedCrossRefGoogle Scholar
  185. 185.
    Venkatarman PS, Blick KE, Fry HD, et al. Postnatal changes in calcium-regulation hormones in very-low birth-weight infants. Am J Dis Child 1985; 139: 913–916.Google Scholar
  186. 186.
    Halloran BP, DeLuca HF. Calcium transport in small intestine during early development: role of vitamin D. Am J Physiol 1980; 239: G473 - G479.PubMedGoogle Scholar
  187. 187.
    Halloran BP, DeLuca HF. Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D during neonatal development in the rat. J Biol Chem 1981; 256: 7338–7342.PubMedGoogle Scholar
  188. 188.
    Ravid A, Koren R, Rotem C, et al. Mononuclear cells from human neonate are partially resistant to the action of 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 1988; 67: 755–759.PubMedCrossRefGoogle Scholar
  189. 189.
    Chandler JS, Pike JW, Haussler MR. 1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol. Biochem Biophys Res Commun 1979; 90: 1057–1063.PubMedCrossRefGoogle Scholar
  190. 190.
    Morrissey RL, Rath DF. Purification of human renal calcium binding protein from necropsy specimen. Proc Soc Exp Biol Med 1974; 145: 699–703.PubMedGoogle Scholar
  191. 191.
    Huffer WE. Biology of disease: morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab Invest 1988; 59: 418–442.PubMedGoogle Scholar
  192. 192.
    Anonymous. The function of the vitamin K-dependent protein, bone gla protein (BGP) and kidney gla protein (KGP). Nutr Rev 1984; 42: 230–233.Google Scholar
  193. 193.
    Price PA, Baukol SA. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 1980; 255: 11660–11663.PubMedGoogle Scholar
  194. 194.
    Lian JB, Coutts M, Canalis E. Studies of hormonal regulations of osteocalcin synthesis in cultured fetal rat calvariae. J Biol Chem 1985; 260: 8706–8710.PubMedGoogle Scholar
  195. 195.
    Lian JB, Glimcher MJ, Roufosse AH, et al. Alterations of the gamma-carboxyglutamic acid and osteocalcin concentrations in vitamin D-deficient chick bone. J Biol Chem 1982; 257: 4999–5003.PubMedGoogle Scholar
  196. 196.
    Markowitz ME, Gundberg CM, Rosen JF. The circadian rhythm of serum osteocalcin concentration: effects of 1,25-dihydroxyvitamin D administration. Calcif Tissue Int 1987; 40: 179–183.PubMedCrossRefGoogle Scholar
  197. 197.
    Gundberg CM, Cole DEC, Lian JB, et al. Serum osteocalcin in the treatment of inherited rickets with 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 1983; 56: 1063–1067.PubMedCrossRefGoogle Scholar
  198. 198.
    Koo WW, Tsang RC, Poser JW, et al. Elevated serum calcium and osteocalcin levels from calcitriol in preterm infants. Am J Dis Child 1986; 140: 1152–1158.PubMedGoogle Scholar
  199. 199.
    Shima M, Seino Y, Tanaka Y. Bone γ-carboxyglutamic acid containing protein in the perinatal period. Acta Paediatr Scand 1985; 74: 674–677.PubMedCrossRefGoogle Scholar
  200. 200.
    Jie KG, Hamulyak K, Gijsbers BLMG, et al. Serum osteocalcin as a marker for vitamin K-status in pregnant women and their newborn babies. Thromb Haemost 1992; 68: 388–391.PubMedGoogle Scholar
  201. 201.
    Haroon Y, Shearer MJ, Rahim S, et al. The content of phylloquinone (vitamin K,) in human milk, cow’s milk and infant formula foods determined by high performance liquid chromatography. J Nutr 1982; 112: 1105–1117.PubMedGoogle Scholar
  202. 202.
    Motohara K, Matsukara M, Matsuda I, et al. Severe vitamin K deficiency in breast-fed infants. J Pediatr 1984; 105: 943–945.PubMedCrossRefGoogle Scholar
  203. 203.
    Tamura T, Takasaki K, Hanaihara T, et al. Effect of vitamin K administration to the mother on prevention of vitamin K deficiency in the neonate. Acta Obst Gynaecol Jpn 1986; 38: 880–886.Google Scholar
  204. 204.
    Von Kries R, Shearer M, McCarthy PT, et al. Vitamin K1 content of maternal milk: influence of the stage of lactation, lipid composition, and vitamin K1 supplements given to the mother. Pediatr Res 1987; 22: 513–517.CrossRefGoogle Scholar
  205. 205.
    Fournier B, Sann T, Guillaumont M, et al. Variations of phylloquinone concentration in human milk at various stages of lactation and in cow’s milk at various seasons. Am J Clin Nutr 1987; 45: 551–558.PubMedGoogle Scholar
  206. 206.
    Lipsky JJ. Nutritional sources of vitamin K. Mayo Clin Proc 1994; 69: 462–466.PubMedCrossRefGoogle Scholar
  207. 207.
    Suttie JW. Vitamin K-dependent carboxylase. Annu Rev Biochem 1985; 54: 459–477.PubMedCrossRefGoogle Scholar
  208. 208.
    Dahlback B. Interaction between complement component C4b-binding protein and the vitamin K-dependent protein S. Scand J Clin Lab Invest 1985; 45 (suppl 177): 33–41.Google Scholar
  209. 209.
    Soute BAM, DeMetz M, Vermeer C. Characteristics of vitamin K-dependent carboxylating systems from human liver and placenta. FEBS Lett 1982; 146: 365–368.PubMedCrossRefGoogle Scholar
  210. 210.
    Suttie JW. Synthesis of vitamin K-dependent proteins. FASEB J 1993; 7: 445–452.PubMedGoogle Scholar
  211. 211.
    Dowd P, Ham SW, Naganathan S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419–440.PubMedCrossRefGoogle Scholar
  212. 212.
    Thijssen HH, Drittij-Reijnders MJ, Fischer MAJG. Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrations. J Nutr 1996; 126: 537–543.PubMedGoogle Scholar
  213. 213.
    Hodges SJ, Bejui J, Leclercq M, et al. Detection and measurement of vitamins K1 and K2 in human cortical and trabecular bone. J Bone Miner Res 1993; 8: 1005–1008.PubMedCrossRefGoogle Scholar
  214. 214.
    Hirauchi K, Sakano T, Morimoto A. Measurement of K vitamins in human and animal plasma by high-performance liquid chromatography with fluorometric detection. Chem Pharm Bull 1986; 34: 845–849.PubMedCrossRefGoogle Scholar
  215. 215.
    Shino M. Determination of endogenous vitamin K (phylloquinone and menaquinone-n) in plasma by high-performance liquid chromatography using platinum oxide catalyst reduction and fluorescence detection. Analyst 1988; 113: 393–397.PubMedCrossRefGoogle Scholar
  216. 216.
    Kindberg CG. Studies on vitamin K nutrition. PhD thesis. University of Wisconsin, Madison, 1987: 219.Google Scholar
  217. 217.
    Hodges SJ, Akesson K, Vergnaud P, et al. Circulating levels of vitamin K1 and K2 decreased in elderly women with hip fractures. J Bone Miner Res 1993; 8: 1241–1245.PubMedCrossRefGoogle Scholar
  218. 218.
    Hodges SJ, Pilkington MJ, Shearer MJ, et al. Age-related changes in the circulating levels of congeners of vitamin K2, menaquinone-7 and menaquinone-8. Clin Sci 1990; 787: 63–66.Google Scholar
  219. 219.
    Hodges SJ, Pilkington MJ, Stamp TCB, et al. Depressed levels of circulating menaquinones in patients with osteoporotic fractures of the spine and femoral neck. Bone 1991; 12: 387–389.PubMedCrossRefGoogle Scholar
  220. 220.
    McCarthy PT, Shearer MJ, Gau G, et al. Vitamin K content of human liver at different ages. Haemostasis 1986; 16: 84–85.Google Scholar
  221. 221.
    Kayata S, Kindberg C, Greer FR, et al. Vitamin K, and K2 in infant human liver. J Pediatr Gastroenterol Nutr 1989; 8: 304–307.PubMedCrossRefGoogle Scholar
  222. 222.
    Hodges SJ, Bejui J, Leclercq M, et al. Detection and measurement of vitamins K1 and K2 in human cortical and trabecular bone. J Bone Miner Res 1993; 8: 1005–1008.PubMedCrossRefGoogle Scholar
  223. 223.
    Fujita K, Kakuya F, Ito S. Vitamin K1 and K2 status and fecal flora in breast fed and formula fed 1-month-old infants. Eur J Pediatr 1993; 152: 852–855.PubMedCrossRefGoogle Scholar
  224. 224.
    Greer FR, Mummah-Schendel LL, Marshall S, et al. Vitamin K1 (phylloquinone) and vitamin K2 (menaquinone) status in newborn during the first week of life. Pediatrics 1988; 81: 137–140.PubMedGoogle Scholar
  225. 225.
    Uchida K, Komeno T. Relationships between dietary and intestinal vitamin K, clotting factor levels, plasma vitamin K and urinary Gla. In: Suttie JW, ed. Current advances in vitamin K research. New York: Elsevier Press, 1988: 477–492.Google Scholar
  226. 226.
    Usui Y, Nishimura N, Kobayashi N, et al. Measurement of vitamin K in human liver by gradient elution high-performance liquid chromatography using platinum-black catalyst reduction and fluorometric detection. J Chromatogr 1989; 489: 291–301.PubMedCrossRefGoogle Scholar
  227. 227.
    Usui Y, Tanimura H, Nishimura N, et al. Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 1990; 51: 846–852.PubMedGoogle Scholar
  228. 228.
    Khayata S, Kindberg C, Greer FR, et al. Vitamin K1 and K2 in infant human liver. J Pediatr Gastroenterol Nutr 1989; 8: 304–307.CrossRefGoogle Scholar
  229. 229.
    Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr 1995; 15: 399–417.PubMedCrossRefGoogle Scholar
  230. 230.
    Will BH, Usui Y, Suttie JW. Comparative metabolism and requirement of vitamin K in chicks and rats. J Nutr 1992; 122: 2354–2360.PubMedGoogle Scholar
  231. 231.
    Guillaumont M, Weiser H, Sann L, et al. Hepatic concentration of vitamin K active compounds after application of phylloquinone to chickens on a vitamin K deficient or adequate diet. Int J Vitam Nutr Res 1992; 62: 15–20.PubMedGoogle Scholar
  232. 232.
    Shearer MJ, Barkhan P, Rahim S, et al. Plasma vitamin K, in mothers and their newborn babies. Lancet 1982; 2: 460–463.PubMedCrossRefGoogle Scholar
  233. 233.
    Pietersma-deBruyn ALJM, Van Haard PMM. Vitamin K1 in the newborn. Clin Chim Acta 1985; 150: 95–101.CrossRefGoogle Scholar
  234. 234.
    Mandelbrot L, Guillaumont M, Leclercq M, et al. Placental transfer of vitamin K1 and its implication in fetal haemostasis. Thromb Haemost 1988; 60: 39–43.PubMedGoogle Scholar
  235. 235.
    Greer FR, Smith DK, Marshall S, et al. Oral versus intramuscular vitamin K1 prophylaxis: evaluation of a new oral mixed-micellar preparation in breastfeeding infants. In press.Google Scholar
  236. 236.
    Hamulyak K, DeBoer-van den Berg MAG, Thijssen HHW, et al. The placental transport of [3H] vitamin K1 in rats. Br J Haematol 1987; 65: 335–338.PubMedCrossRefGoogle Scholar
  237. 237.
    Guillaumont MJ, Durr FM, Combet JM, et al. Vitamin K1 diffusion across the placental barrier in the gravid female rat. Dev Pharmacol Ther 1988; 11: 57–64.PubMedGoogle Scholar
  238. 238.
    Blomstrand R, Forsgren L. Vitamin K1 1H in man: its intestinal absorption and transport in the thoracic duct lymph. Int Z Vitam Forschung 1968; 38: 45–64.Google Scholar
  239. 239.
    Shearer MJ, McBurney A, Barkhan P. Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man. Vitam Horm 1974; 32: 513–542.PubMedCrossRefGoogle Scholar
  240. 240.
    Corrigan JJ, Ulfers LL. Effect of vitamin E on prothrombin levels in warfarin-induced vitamin K deficiency. Am J Clin Nutr 1981; 34: 1701–1705.Google Scholar
  241. 241.
    Fournier B, Leclercq M, Andiger-Petit C, et al. Vitamin K1 binding protein in milk. Int J Vitam Res 1987; 57: 145–150.Google Scholar
  242. 242.
    Hollander D, Rim E, Muralidhara KS. Vitamin K1 intestinal absorption in vivo: influence of luminal contents on transport. Am J Physiol 1977; 232: E69 - E74.PubMedGoogle Scholar
  243. 243.
    Hollander D, Rim E. Vitamin K2 absorption by rat everted small intestinal sacs. Am J Physiol 1976; 231: 415–419.PubMedGoogle Scholar
  244. 244.
    Hollander D, Muralidhara KS, Rim E. Colonic absorption of bacterially synthesized vitamin K2 in the rat. Am J Physiol 1976; 230; 251–255.PubMedGoogle Scholar
  245. 245.
    Sann L, Leclercq M, Guillaumont M, et al. Serum vitamin K1 concentrations after oral administration of vitamin K1 in low birth weight infants. J Pediatr 1985; 107: 608–611.PubMedCrossRefGoogle Scholar
  246. 246.
    Thierry MJ, Hermodson MA, Suttie JW. Vitamin K and warfarin distribution and metabolism in the warfarin-resistant rat. Am J Physiol 1970; 219: 854–859.PubMedGoogle Scholar
  247. 247.
    Duello TJ, Matschiner JT. Characterization of vitamin K from pig liver and dog liver. Arch Biochem Biophys 1971; 144: 330–338.PubMedCrossRefGoogle Scholar
  248. 248.
    Bjornsson TD, Meffin PG, Swezey SE, et al. Disposition and turnover of vitamin K1 in man. In: Suttie JW, ed. Vitamin K metabolism and vitamin K-dependent proteins. Baltimore: University Park Press, 1980; 328–332.Google Scholar
  249. 249.
    Andrew M, Paes B, Milner R, et al. Development of the human coagulation system in the full-term infant. Blood 1987; 70: 165–172.PubMedGoogle Scholar
  250. 250.
    Andrew M, Paes B, Milner R, et al. Development of the human coagulation system in the healthy premature infant. Blood 1988; 72: 1651–1657.PubMedGoogle Scholar
  251. 251.
    Göbel U, Sonnenschein-Kosenow S, Petrich C, et al. Vitamin K deficiency in the newborn. Lancet 1977; 2: 187–188.Google Scholar
  252. 252.
    Von Kries R, Greer FR, Suttie JW. Assessment of vitamin K status of the newborn infant. J Pediatr Gastroenterol Nutr 1993; 16: 231–238.CrossRefGoogle Scholar
  253. 253.
    Liska DJ, Suttie JW. Location of gamma-carboxyglutamyl residues in partially carboxylated prothrombin preparations. Biochemistry 1988; 27: 8636–8641.PubMedCrossRefGoogle Scholar
  254. 254.
    Amiral J, Grosley M, Plassart V, et al. Development of a monoclonal immunoassay for the direct measurement of decarboxyprothrombin on plasma (abstract). Thromb Haemost 1991; 65: 10.Google Scholar
  255. 255.
    Belle M, Brebank R, Guinet R, et al. Production of a new monoclonal antibody specific to human des-gammacarboxyprothrombin in the presence of calcium ions. Application to the development of a sensitive ELISA-test. J Immunoassay 1995; 16: 213–229.PubMedCrossRefGoogle Scholar
  256. 256.
    Bovill EG, Soll RF, Lynch M, et al. Vitamin K, metabolism and the production of descarboxyprothrombin and protein C in the term and premature neonate. Blood 1993; 81: 77–83.PubMedGoogle Scholar
  257. 257.
    Motahara K, Endo F, Matsuda I. Effect of vitamin K administration on acarboxyprothrombin (PIVKA-II) levels in newborns. Lancet 1985; 2: 242–244.CrossRefGoogle Scholar
  258. 258.
    Motohara K, Takayi S, Endo F, et al. Oral supplementation of vitamin K for pregnant women and effects on levels of plasma vitamin K and PIVKA-II in the neonate. J Pediatr Gastroenterol Nutr 1990; 11: 32–36.PubMedCrossRefGoogle Scholar
  259. 259.
    Von Kries R, Shearer MJ, Widdershoven J, et al. Desgamma-carboxyprothrombin (PIVKA-II) and plasma vitamin K, in newborns and their mothers. Thromb Haemost 1992; 68: 383–387.Google Scholar
  260. 260.
    Widdershoven J, Lambert W, Motohara K, et al. Plasma concentrations of vitamin K1 and PIVKA-II in bottle-fed and breast-fed infants with and without vitamin K prophylaxis at birth. Eur J Pediatr 1988; 148: 139–142.PubMedCrossRefGoogle Scholar
  261. 261.
    Cornelissen E, Kollée L, DeAbreu R, et al. Effects of oral and intramuscular vitamin K prophylaxis on vitamin K1, PIVKA-II and clotting factors in breast-fed infants. Arch Dis Child 1992; 67: 1250–1254.PubMedCrossRefGoogle Scholar
  262. 262.
    Cornelissen E, Kollée L, DeAbreu R, et al. Prevention of vitamin K deficiency in infancy by weekly administration of vitamin K. Acta Pediatr 1983; 82: 656–659.Google Scholar
  263. 263.
    Cornelissen E, Kollée L, van Lith T, et al. Evaluation of a daily dose of 25 mg vitamin K1 to prevent vitamin K deficiency in breast-fed infants. J Pediatr Gastroenterol Nutr 1993; 16: 301–305.PubMedCrossRefGoogle Scholar
  264. 264.
    Greer FR. Vitamin K deficiency and hemorrhage in infancy. Clin Perinatol 1995; 22: 759–777.PubMedGoogle Scholar
  265. 265.
    Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 1922; 56: 650–651.PubMedCrossRefGoogle Scholar
  266. 266.
    Oski FA, Barness LA. Vitamin E deficiency: a previously unrecognized cause of hemolytic anemia in the premature infant. J Pediatr 1967; 70: 211–220.Google Scholar
  267. 267.
    Nelson JA. Pathology of vitamin E deficiency. In: Machlin LJ, ed. Vitamin E. A comprehensive treatise. New York: Marcel Dekker, 1980: 397–428.Google Scholar
  268. 268.
    Traber MG. Vitamin E in humans: demand and delivery. Annu Rev Nutr 1996; 16: 321–347.Google Scholar
  269. 269.
    Nitowsky HM, Cornblath M, Gordon HH. Studies of tocopherol deficiency in infants and children. II. Plasma tocopherol and erythrocyte hemolysis in hydrogen peroxide. Am J Dis Child 1956; 92: 164–174.Google Scholar
  270. 270.
    Farrell PM. Human health and disease. In: Machlin LJ, ed. Vitamin E. A comprehensive treatise. New York: Marcel Dekker, 1980: 519–620.Google Scholar
  271. 271.
    Farrell PM. Vitamin E. In: Shils M, Young V, eds. Modern nutrition in health and disease. Philadelphia: Lea & Febeger, 1988: 340–354.Google Scholar
  272. 272.
    Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics and bioavailability. Annu Rev Nutr 1990; 10: 357–382.PubMedCrossRefGoogle Scholar
  273. 273.
    Bieri JG, McKenna MC. Expressing dietary values for fat-soluble vitamins: changes in concept and terminology. Am J Clin Nutr 1981; 34: 289–293.PubMedGoogle Scholar
  274. 274.
    McCay PB, King MM, Poyer JL, et al. An update on antioxidant theory: spin trapping of trichloromethyl radicals in vivo. Ann NY Acad Sci 1982; 393–423.Google Scholar
  275. 275.
    McCay PB, King M. Biochemical function. In: Machlin LJ, ed. Vitamin E. A comprehensive treatise. New York: Marcel Dekker, 1980: 289–317.Google Scholar
  276. 276.
    Bieri JG, Farrell PM. Vitamin E. Vitam Horm 1976;34:31–75PubMedCrossRefGoogle Scholar
  277. 277.
    Farquahr JW, Ahrens EH. Effects of dietary fats on human erythrocyte fatty acid patterns. J Clin Invest 1963; 5: 675–685.CrossRefGoogle Scholar
  278. 278.
    Burton GW, Ingold KU. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 1986; 19: 194–201.CrossRefGoogle Scholar
  279. 279.
    Bieri JG, Evarts RP. Gamma tocopherol: metabolism, biological activity, and significance in human vitamin E nutrition. Am J Clin Nutr 1974; 27: 980–986.Google Scholar
  280. 280.
    Dillard CJ, Gavino VC, Tappel AL. Relative antioxidant effectiveness of alpha-tocopherol and gamma-tocopherol in iron-loaded rats. J Nutr 1983; 113: 2226–2273.Google Scholar
  281. 281.
    Burton GW, Ingold KU. Antoxidation of biological molecules. I. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 1981; 103: 6472–6477.Google Scholar
  282. 282.
    Witting LA. The role of polyunsaturated fatty acids in determining vitamin E requirements. Ann NY Acad Sci 1972; 203: 192–198.CrossRefGoogle Scholar
  283. 283.
    Williams ML, Shott RJ, O’Neal PL, et al. Role of dietary iron and fat on vitamin E deficiency anemia of infancy. N Engl J Med 1975; 292: 887–890.Google Scholar
  284. 284.
    Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr 1960; 8: 451–461.Google Scholar
  285. 285.
    Committe on Nutrition, American Academy of Pediatrics. Nutritional needs of low-birth-weight infants. Pediatrics 1985; 75: 976–986.Google Scholar
  286. 286.
    Gross S, Melhorn DK. Vitamin E, red cell lipids and red cell stability in prematurity. Ann NY Acad Sci 1972; 203: 141–162.PubMedCrossRefGoogle Scholar
  287. 287.
    Farrell PM, Bieri JG, Fratantoni JF, et al. The occurrence and effects of human vitamin E deficiency: a study in patients with cystic fibrosis. J Clin Invest 1977; 60: 233–241.Google Scholar
  288. 288.
    Losowsky MS, Kelleher J, Walker BE. Intake and absorption of tocopherol. Ann NY Acad Sci 1972; 203: 212–222.PubMedCrossRefGoogle Scholar
  289. 289.
    Traber MG, Burton GW, Hughes L, et al. Discrimination between forms of vitamin E by humans with and without genetic abnormalities of lipoprotein metabolism. J Lipid Res 1992; 33: 1171–1182.Google Scholar
  290. 290.
    Traber MG, Burton GW, Ingold KU, et al. RRR- and SRR-a-tocopherols are secreted without discrimination in human chylomicrons, but RRR-a-tocopherol is preferentially secreted in very low density lipoproteins. J Lipid Res 1990; 31: 675–685.PubMedGoogle Scholar
  291. 291.
    Traber MG, Ingold KU, Burton GW, et al. Absorption and transport of deuterium-substituted 2R,4’R,8’R-α-tocopherol in human lipoproteins. Lipids 1988; 23: 791–797.PubMedCrossRefGoogle Scholar
  292. 292.
    Traber MG, Kayden HJ. Preferential incorporation of a-tocopherol vs. γ-tocopherol in human lipoproteins. Am J Clin Nutr 1989; 49: 517–526.PubMedGoogle Scholar
  293. 293.
    Traber MG, Kayden HJ. α-Tocopherol as compared with γ-tocopherol is preferentially secreted in human lipoproteins. Ann NY Acad Sci 1989; 570: 95–108.PubMedCrossRefGoogle Scholar
  294. 294.
    Traber MG. Sokol RJH, Burton GW, et al. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate a-tocopherol into lipoproteins secreted by the liver. J Clin Invest 1990; 85: 397–407.Google Scholar
  295. 295.
    Traber MG, Sokol RJ, Kohlschutter A, et al. Impaired discrimination between stereoisomers of a-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 1993; 34: 201–210.Google Scholar
  296. 296.
    Traber MG. Determinants of plasma vitamin E concentrations. Free Rad Biol Med 1994; 16: 229–239.CrossRefGoogle Scholar
  297. 297.
    Catignani GL, Bieri, JG. Rat liver α-tocopherol binding protein. Biochim Biophys Acta 1977; 497: 349–357.PubMedCrossRefGoogle Scholar
  298. 298.
    Sato Y, Hagiwara K, Arai H, et al. Purification and characterization of the a-tocopherol transfer protein from rat liver. FEBS Lett 1991; 288: 41–45.PubMedCrossRefGoogle Scholar
  299. 299.
    Yoshida H, Yusin M, Ren I, et al. Identification, purification and immunochemical characterization of a tocopherol-binding protein in rat liver cytosol. J Lipid Res 1992; 33: 343–350.PubMedGoogle Scholar
  300. 300.
    Kuhlenkamp J, Ronk M, Yusin M, et al. Identification and purification of a human liver cytosolic tocopherol binding protein. Prot Exp Purif 1993; 4: 382–389.CrossRefGoogle Scholar
  301. 301.
    Arita M, Sato Y, Miyata A, et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 1995; 306: 437–443.PubMedGoogle Scholar
  302. 302.
    Doerflinger N, Linder C, Puahchi K, et al. Ataxia with vitamin E deficiency: refinement of genetic localization and analysis of linkage disequilibrium by using new markers in 14 families. Am J Hum Genet 1995; 56: 1116–1124.Google Scholar
  303. 303.
    Sokol RJ, Kayden HJ, Bettis DB, et al. Isolated vitamin E deficiency in the absence of fat malabsorption-familial and sporadic cases: characterization and investigation of causes. J Lab Clin Med 1988; 111: 548–559.Google Scholar
  304. 304.
    Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedrich’s ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet 1993; 5: 195–200.Google Scholar
  305. 305.
    Ben Hamida M, Belal S, Sirugo G, et al. Friedreich’s ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology 1993; 43: 2179–2183.Google Scholar
  306. 306.
    Ouahchi K, Arita M, Kayden H, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the α-tocopherol transfer protein. Nature Genet 1995; 9: 141–145.Google Scholar
  307. 307.
    Bieri JG, Evarts RP. Effect of plasma lipid levels and obesity on tissue stores of a-tocopherol. Proc Soc Exp Biol Med 1975; 149: 500–502.PubMedGoogle Scholar
  308. 308.
    Bieri JG. Kinetics of tissue a-tocopherol depletion and repletion. Ann NY Acad Sci 1972; 203: 181–191.PubMedCrossRefGoogle Scholar
  309. 309.
    Bieri JG, Tolliver LJ, Catignani GL. Simultaneous determination of a-tocopherol and retinol in plasma and red cells by high pressure liquid chromatography. Am J Clin Nutr 1979; 32: 2143–2149.PubMedGoogle Scholar
  310. 310.
    Gutcher GR, Lax AM, Farrell PM. Tocopherol isomers in intravenous lipid emulsions and resultant plasma concentrations. J Parenter Enteral Nutr 1984; 8: 269–273.CrossRefGoogle Scholar
  311. 311.
    Gutcher GR, Raynor WJ, Farrell PM. An evaluation of vitamin E status in premature infants. Am J Clin Nutr 1984; 40: 1078–1089.Google Scholar
  312. 312.
    Horwitt MK, Harvey CC, Century B, et al. Polyunsaturated lipids and tocopherol requirements. J Am Diet Assoc 1961; 38: 231–235.PubMedGoogle Scholar
  313. 313.
    Farrell PM, Levine SL, Murphy MD, et al. Plasma tocopherol levels and tocopherol-lipid relationships in a normal population of children as compared to healthy adults. Am J Clin Nutr 1978; 31: 1720–1726.PubMedGoogle Scholar
  314. 314.
    Horwitt MK, Harvey CC, Dahm CH Jr, et al. Relationship between tocopherol and serum lipid levels for determination of nutritional adequacy. Ann NY Acad Sci 1972; 203: 223–226.PubMedCrossRefGoogle Scholar
  315. 315.
    Sokol RJ, Heubi JE, Iannacone ST, et al. Vitamin E deficiency with normal serum vitamin E concentrations in children with chronic cholestasis. N Engl J Med 1984; 310: 1209–1212.Google Scholar
  316. 316.
    Lammi-Keefe CJ. Vitamin D and E in human milk. In: Jensen RG, ed. Handbook of milk composition. San Diego: Academic Press 1995: 706–717.CrossRefGoogle Scholar
  317. 317.
    Kobayaski H, Kanno C, Yamauchi K, et al. Identification of alpha-, beta-, gamma-, and delta-tocopherols and their contents in human milk. Biochim Biophys Acta 1975; 380: 282–290.CrossRefGoogle Scholar
  318. 318.
    Owens WC, Owens EU. Retrolental fibroplasia in premature infants. Am J Ophthalmol 1949; 32: 1631–1637.PubMedGoogle Scholar
  319. 319.
    Moyer WT. Vitamin E levels in term and premature newborn infants. Pediatrics 1950; 6: 893–896.PubMedGoogle Scholar
  320. 320.
    Melhorn DK, Gross S. Vitamin E-dependent anemia in the premature infant. II. Relationships between gestational age and absorption of vitamin E. Pediatrics 1971; 79: 581–588.CrossRefGoogle Scholar
  321. 321.
    Huijbers WAR, Schrijver J, Speek AJ, et al. Persistent low plasma vitamin E levels in premature infants surviving respiratory distress syndrome. Eur J Pediatr 1986; 145: 170–171.Google Scholar
  322. 322.
    Phillips B, Franck LS, Greene HL. Vitamin E levels in premature infants during and after intravenous multivitamin supplementation. Pediatrics 1987; 80: 680–683.Google Scholar
  323. 323.
    Slagle TA, Gross SJ. Vitamin E. In: Tsang RC, Nichols BL, eds. Nutrition during infancy. Philadelphia: Hanley & Belfus, 1988: 277–288.Google Scholar
  324. 324.
    Farrell PM, Zachman RD, Gutcher GR. Fat soluble vitamins A, E, and K in the premature infants. In: Tsang RC, ed. Vitamin and mineral requirements in preterm infants. New York: Marcel Dekker, 1985: 63–98.Google Scholar
  325. 325.
    Gutcher GR, Farrell PJM. Early intravenous correction of vitamin E deficiency in premature infants. J Pediatr Gastroenterol Nutr 1985; 4: 604–609.Google Scholar
  326. 326.
    Hittner HM, Speer ME, Rudolph AJ, et al. Retrolental fibroplasia and vitamin E in the preterm infant-comparison of oral versus intramuscular administration. Pediatrics 1984; 73: 238–249.Google Scholar
  327. 327.
    Gross SJ, Gabriel E. Vitamin E status in preterm infants fed human milk or infant formula. J Pediatr 1985; 106: 634–640.Google Scholar
  328. 328.
    Greene HL, Moore MEC, Phillips B, et al. Evaluation of a pediatric multiple vitamin preparation for total parenteral nutrition. II. Blood levels of vitamins A, D, and E. Pediatrics 1986; 77: 539–547.Google Scholar
  329. 329.
    Ronnholm KAR, Dostalova L, Simes MA. Vitamin E supplementation in very-low-birth-weight infants: longterm follow-up at two different levels of vitamin E supplementation. Am J Clin Nutr 1989; 49: 121–126.Google Scholar
  330. 330.
    Friedman CA, Wender DF, Temple DM, et al. Serum alpha-tocopherol concentrations in preterm infants receiving less than 25 mg/kg/day alpha-tocopherol acetate supplements. Dev Pharmacol Ther 1988; 11: 273–280.PubMedGoogle Scholar
  331. 331.
    Bougle D, Boutroy MJ, Heng J, et al. Plasma kinetics of parenteral tocopherol in premature infants. Dev Pharmacol Ther 1986; 9: 310–316.PubMedGoogle Scholar
  332. 332.
    Knight ME, Roberts RJ. Disposition of intravenously administered pharmacologic doses of vitamin E in newborn rabbits. J Pediatr 1986; 108: 145–150.Google Scholar
  333. 333.
    Balistreri WF, Farrell MK, Bove KE. Lessons from the E-ferol tragedy. Pediatrics 1986; 78: 503–506.PubMedGoogle Scholar
  334. 334.
    Horwitt MK, Bailey P. Cerebellar pathology in an infant resembling chick nutritional encephalomalacia. Arch Neural Psychiatr 1959; 95: 869–872.Google Scholar
  335. 335.
    Ehrenkranz RA, Bonta BW, Ablow RC, et al. Amelioration of bronchopulmonary dysplasia after vitamin E administration: a preliminary report. N Engl J Med 1978; 229: 564–569.Google Scholar
  336. 336.
    Johnson L, Schaffer D, Quinn G, et al. Vitamin E supplementation and the retinopathy of prematurity. Ann NY Acad Sci 1982; 393: 473–484.CrossRefGoogle Scholar
  337. 337.
    Hittner HM, Godio LB, Rudolph AJ, et al. Retrolental fibroplasia: efficacy of vitamin E in a double-blind clinical study of preterm infants. N Engl J Med 1981; 305: 1365–1371.PubMedCrossRefGoogle Scholar
  338. 338.
    Hittner HM, Godio LB, Speer MI, et al. Retrolental fibroplasia: further clinical evidence and ultrastructural support for efficacy of vitamin E in the preterm infants. Pediatrics 1983; 71: 423–432.Google Scholar
  339. 339.
    Kretzer FL, Hittner JM, Johnson AT, et al. Vitamin E and retrolental fibroplasia: ultrastructural support of clinical efficacy. Ann NY Acad Sci 1982; 393: 145–164.Google Scholar
  340. 340.
    Sokol RJ. Vitamin E deficiency and neurologic disease. Annu Rev Nutr 1988; 8: 351–373.PubMedCrossRefGoogle Scholar
  341. 341.
    Chiswick ML, Johnson M, Woodhall C, et al. Protective effect of vitamin E (dl-alpha-tocopherol) against intraventricular hemorrhage in premature babies. Br Med J 1983; 287: 81–84.Google Scholar
  342. 342.
    Speer ME, Blifeld C, Rudolph AJ, et al. Intraventricular hemorrhage and vitamin E in the very low-birth-weight infant: evidence of efficacy of early intramuscular vitamin E administration. Pediatrics 1984; 74: 1107–1112.Google Scholar
  343. 343.
    Ehrenkranz RA, Ablow RC, Warshaw JB. Effect of vitamin E on the development of oxygen-induced lung injury in neonates. Ann NY Acad Sci 1982; 393: 452–465.Google Scholar
  344. 344.
    Phelps DL, Rosenbaum AL, Isenberg SJ, et al. Tocopherol efficacy and safety for preventing retinopathy of prematurity: a randomized, controlled, double-masked trial. Pediatrics 1987; 79: 489–500.PubMedGoogle Scholar
  345. 345.
    Bell EF. Prevention of bronchopulmonary dysplasia: vitamin E and other antioxidants. In: Farrell PM, Tausing LM, eds. Bronchopulmonary dysplasia and related chronic respiratory disorders. Report of the Ninetieth Ross Conference on Pediatric Research, 1986: 77–82.Google Scholar
  346. 346.
    Saldanha RL, Cepeda EE, Poland RL. The effect of vitamin E prophylaxis on the incidence and severity of bronchopulmonary dysplasia. J Pediatr 1982; 101: 89–93.Google Scholar
  347. 347.
    Watts JL, Milner R, Zipursky A, et al. Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants <1500g birthweight. Eur Respir J 1991;4:188–190.PubMedGoogle Scholar
  348. 348.
    Chiswick M, Gladman G, Sinba S, et al. Vitamin E supplementation and periventricular hemorrhage in the newborn. Am J Clin Nutr 1991; 53: 370S - 372S.PubMedGoogle Scholar
  349. 349.
    Fish WH, Cohen M, Franzek E, et al. Effect of intramuscular vitamin E on mortality and intracranial hemorrhage in neonates of 1000 grams or less. Pediatrics 1990; 85: 578–584.Google Scholar
  350. 350.
    Laro MR, Wojewardine K, Wald NJ. Is routine vitamin E administration justified in very low-birthweight infants? Dev Med Child Neurol 1990; 32: 442–450.Google Scholar
  351. 351.
    Farrell PM. Vitamin E deficiency in premature infants. J Pediatr 1979; 95: 869–872.PubMedCrossRefGoogle Scholar
  352. 352.
    Banagale RC, Bray JJ, Erenberg AP. Serum free tocopherol levels in premature infants (PI) receiving total parenteral nutrition (TPN). Pediatr Res 1981; 15: 492A.CrossRefGoogle Scholar
  353. 353.
    Bell EF, Brown EJ, Milner R, et al. Vitamin E absorption in small premature infants. Pediatrics 1979; 63: 830–832.Google Scholar
  354. 354.
    Specker BL, Greer FR, Tsang RC, Vitamin D. In: Tsang RC, Nichols BL, eds. Nutrition during infancy. Philadelphia: Hanley & Belfus 1988: 264–274.Google Scholar
  355. 355.
    Greer FR, Suttie VW, Vitamin K and the newborn. In: Tsang RC, Nichols BL, eds. Nutrition during infancy. Philadelphia: Hanley & Belfus 1988: 289–297.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Frank R. Greer
  • Richard D. Zachman

There are no affiliations available

Personalised recommendations